- Let X be a nonempty set and let F denote the set of all functions from X into R. For every f,g∈ F we define (f+g)(x)=f(x)+g(x), and (f*g)(x)=f(x)g(x). Under what conditions is (F,+,*) a field? *Solution.* The condition is that X is a one element set. If it is then all functions from X into R are constant and resulting algebra is isomorphic with R. Otherwise X contains at least two different elements *a* and *b*. The function f(*a*)=0 and f(x)=1 for every x≠a is not the zero function and is not invertible with respect to *.
- 2. Sets A and B are linearly independent. Prove that if $span(A) \cap span(B) = \{\theta\}$ then $A \cup B$ is linearly independent. *Solution.* Let $A = \{v_1, \dots, v_k\}$ and $B = \{w_1, \dots, w_p\}$. Suppose $a_1v_1 + \dots + a_kv_k + b_1w_1 + \dots + b_pw_p = \theta$. Then $a_1v_1 + \dots + a_kv_k = (-b_1)w_1 + \dots + (-b_p)w_p$. Since LHS is a vector from span(A) and RHS is from span(B), they both belong to $span(A) \cap span(B)$. Since the only vector there is θ , both are equal to θ , and, by linear independence of A and B we get $a_1 = \dots = a_k = b_1 = \dots = b_p = 0$, i.e. $A \cup B$ is linearly independent.
- 3. F(x,y,z,t) = (-2x-3y+4z-4t,x+z-t,x+y-z+2t,x+2y-3z+4t). Find the Jordan block matrix for F. *Hint* $\lambda^{3}(\lambda-1)=0$. $\begin{bmatrix} -2 & -3 & 4 & -4 \end{bmatrix}$

Solution. Obviously, A=M_S(F)= $\begin{bmatrix} -2 & -3 & 4 & -4 \\ 1 & 0 & 1 & -1 \\ 1 & 1 & -1 & 2 \\ 1 & 2 & -3 & 4 \end{bmatrix}$. One easily verifies that rank(A-0I)=3 and rank(A-0I)

1I)=3. Hence, the number of J-blocks for λ =0 is 1 and the number of J-blocks for λ =1 is also 1. That means $\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$

that $J = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. 4. For the matrices $J = \begin{bmatrix} -2 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & -2 \end{bmatrix}$ and $A = \begin{bmatrix} -3 & -5 & 1 & 4 \\ -2 & -6 & 2 & 4 \\ 1 & -1 & -3 & 0 \\ -3 & -6 & 3 & 4 \end{bmatrix}$ find P such that $J = P^{-1}AP$.

Solution. $(A-(-2)I)^2$ is the zero matrix (because so is $(J-(-2)I)^2$). Hence P has columns $(A-(-2)I)v_2, v_2, (A-(-2)I)v_4, v_4$, where v_2 and v_4 are chosen so that $(A-(-2)I)v_2$ and $(A-(-2)I)v_4$ are linearly independent. We may

choose
$$v_2=(1,0,0,0)$$
 and $v_4=(0,0,0,1)$, getting $P = \begin{bmatrix} -1 & 1 & 4 & 0 \\ -2 & 0 & 4 & 0 \\ 1 & 0 & 0 & 0 \\ -3 & 0 & 6 & 1 \end{bmatrix}$.
5. $M_R(T) = \begin{bmatrix} 1 & 2 & 4 & 3 \\ 2 & 3 & 3 & 4 \\ 3 & 4 & 2 & 1 \\ 4 & 5 & 1 & 2 \end{bmatrix}$, $R = \{v_1, v_2, v_3, v_4\}$. Find $M_S(T)$, where $S = \{v_2, v_3, v_4, v_1\}$.

Solution. The first column of $M_R(T)$ signifies that $T(v_1)=v_1+2v_2+3v_3+4v_4=2v_2+3v_3+4v_4+1v_1$. But v_1 is the last vector in S, so 2,3,4,1 will form the last column in $M_S(T)$. Doing the same for v_2, v_3 and v_4 we get

 $M_{S}(T) = \begin{bmatrix} 3 & 3 & 4 & 2 \\ 4 & 2 & 1 & 3 \\ 5 & 1 & 2 & 4 \\ 2 & 4 & 3 & 1 \end{bmatrix}.$