
HINTS & SOLUTIONS 
1. Problems of the type : A given complex number is a root of a polynomial with real coefficients, find remaining 

roots. 
Hint: If the coefficients of the polynomial are real (and ONLY in this case) we can use the fact that the conjugate of 
a root is also a root.  
Example. 1-i is a root of z4−6z3+16z2−20z+12. Find the remaining roots. 
SOLUTION. First, the degree of our polynomial is 4, so, by the main theorem of algebra we need three more roots. 
Since all coefficients are real and 1-i is a root, so one of the remaining three roots is 1+i . Hence, our polynomial is 
divisible by (z-(1-i))(z-(1+i)) = (z-1+i)(z-1-i) = z2-2z+2. The division yields z2-4z+6. For this quadratic polynomial, 

∆=-8, i22±=∆ , so the missing two roots are 2–2 i and 2+ 2 i.  
2. Problems of the type : Show that the intersection of two substructures (like groups, fields, vector spaces) is also a 

substructure. 
Hint. These problems require the WTH (What-The-Hell) approach. You need to realize what-the-Hell is the 
intersection of two sets (it consists of those objects who simultaneously belong to both sets), and also what-the-Hell 
is this particular type of structure. In the case of subspaces of a vector space you may use the theorem we proved in 
class.  
Example. V is a vector space over a field F. Show that for every two subspaces W and U of V, W∩U is a subspace. 
SOLUTION. Θ∈W and Θ∈U so Θ∈W∩U and W∩U ≠ ∅. If x,y∈W∩U then x,y∈W and x,y∈U. Then x+y∈W 
because W is a subspace and x+y∈U because U is a subspace. Hence x+y∈W∩U, i.e. W∩U is closed under vector 
addition. In the same way one shows that W∩U is closed under scaling. 
 

3. Problems of the type : Calculate some power of a quotient of two complex numbers.  
Hint. Usually it helps to find polar forms of the two complex numbers, use the division lemma to find the polar form 
of the quotient and then use de Moivre Law to calculate the solution. Sometimes (Example 2 - Problem 1 from the 
year 2005) it is easier to divide first, represent the quotient in the polar form and then use de Moivre Law. 
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Example 2. 
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4. Problems of the type : Find all complex numbers z satisfying an equation involving z, z , |z|, some exponents and 
coefficients. 
Hint. These equations can usually be reduced to zn=c for some constants n and c. Use identities z z =|z|2 , |z|=|z | , 
|zw|=|z||w| and some common sense. Once you reduce the equation to the form zn=c use the root formula to find all n 



roots of c.  
Example. Problem 2(2009)  i( z )3z = 8|z| 
SOLUTION. Apply modulus to both sides. We get |i( z )3z| = |8|z||, which yields |z|4=8|z|. This means |z|=0 or |z|3=8, 
i.e. |z|=2. In the case |z|=0 we get z=0 – and this is one of our solutions. Now consider the case |z|=2. Plugging this 
into our original equation we get  
i( z )3z = 16 
i( z )2 z z = 16 
Since z z =|z|2 = 4 we get  
i( z )24 = 16 and 
i( z )2=4 and  
( z )2 = -4i 
Conjugating both sides we get 

z2 = 4i. Roots of 4i are z1= 22 i+  and z2= 22 i−−  . So our solutions are: 0, 22 i+  and 22 i−− . 
 


