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. Let (F#,&) beafield and let A be the identity element for #. Prove that for every x and y from F, if

x# A andy # A then x&y # A.
Solution. Let E denote the identity element for &, and let x* denote the inverse to x with respect to
&. Suppose x&Y = A. Then x}(x&y) = x*A, which implies y=A, contrary to our assumption.

. Provethat Ry[x] (the set of al polynomials of degree at most 2) is avector space over the field of
real numbers. Vector addition and scaling are regular operations on functions.

Solution. Ry[X] is obviously nonempty, the sum of two polynomials from R[] belongs to R,[X]
and amultiple of a polynomial from R,[X] belongsto R,[X]. So Rz[X] is a subspace of the space of
al functionsfrom Rinto R, so it is avector space.

. Find all complex numbers satisfying 2’ = z.

Solution. 2 =z implies z° = zz=|2". Taking modulus of both sideswe get |2° =|2°, which
implies |2 =0 or |2 =1. Hencewe get z° =0 or z° =1. In thefirst case we have z=0. In the
second case we just the root formulato find all 8 roots of 1 of order 8.



