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2. Let (F,#,&) be a field and let ∆ be the identity element for #. Prove that for every x and y from F, if 

x ≠ ∆ and y ≠ ∆ then x&y ≠ ∆.  
Solution. Let Ε denote the identity element for &, and let x-1 denote the inverse to x with respect to 
&. Suppose x&y = ∆. Then x-1(x&y) = x-1∆, which implies y=∆, contrary to our assumption. 
 

3. Prove that R2[×] (the set of all polynomials of degree at most 2) is a vector space over the field of 
real numbers. Vector addition and scaling are regular operations on functions. 
Solution. R2[x] is obviously nonempty, the sum of two polynomials from R2[x] belongs to R2[x] 
and a multiple of a polynomial from R2[x] belongs to R2[x]. So R2[x] is a subspace of the space of 
all functions from R into R , so it is a vector space. 
 

4. Find all complex numbers satisfying zz =7 .  

Solution. zz =7  implies 
28 zzzz == . Taking modulus of both sides we get 

28
zz = , which 

implies 0=z  or 1=z . Hence we get 08 =z  or 18 =z . In the first case we have z=0. In the 

second case we just the root formula to find all 8 roots of 1 of order 8. 
 


