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. R"is the set of positive real numbers. Prove tRaX) is a vector space oveR #,x) where + and
x denote ordinary addition and multiplication, acdlgg byp is defined as raising to the power of
p, i.e.pv=\. You may skip showing that (R*,x) is an abelian group, but you must tell me what is
the zero vector 6.
Solution. Vectors are positive numbers, vector additionusiber multiplication, so the zero vector
6=1. The result of scaling is a vector (a positiuenber risen to any power yields a positive
number). What remains to be verified is axioms avg both vectors and scalars.
"associativity”: (pg)v=p(qv). In our case it meaips))v=\"=vP=(v)P=p(V)=p(qv), indeed,
one “distributivity”: (p+q)v=y"%=vPvI=pvxqv, andxis vector addition,
the other “distributivity”: p(v+u)=(%u)P=vPxuP=pv+pu,
scaling by 1: 1v=tev
. Verify if the set $={(1,0,1,1),(2,0,-1,1),(2,0,)} is linearly independent iR*.
Solution. Let a(1,0,1,1)+b(2,0,-1,1)+c(2,0,1,-1)=(0,0,0;Mis leads to a linear system
a+2b+c=0

Oa+0b+0c=0 _ . . . . :
a—btc=0 Adding equations 3 and 4 side to side we gef2i.e.a=0. Subtracting
a+tb-c=0

equation 3 from equation 1 we gét=®, i.e.b=0. Pluggingg=b=0 into equation 1 we getO0.
Hence the answer is YES, the set is linearly inddpat.
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