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2. Use the division of complex numbers to calculate 
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. Hence the 

answer is 
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3. R+ is the set of positive real numbers. Prove that (R+,××××) is a vector space over (R,+,××××) where + and 
×××× denote ordinary addition and multiplication, and scaling by p is defined as raising to the power of 
p, i.e. pv=vp. You may skip showing that (R+,××××) is an abelian group, but you must tell me what is 
the zero vector θ. 
Solution. Vectors are positive numbers, vector addition is number multiplication, so the zero vector 
θ=1. The result of scaling is a vector (a positive number risen to any power yields a positive 
number). What remains to be verified is axioms involving both vectors and scalars.  
”associativity”: (pq)v=p(qv). In our case it means (pq)v=vpq=vqp=(vq)p=p(vq)=p(qv), indeed, 
one “distributivity”: (p+q)v=vp+q=vpvq=pv×qv, and ×is vector addition, 
the other “distributivity”: p(v+u)=(v×u)p=vp×up=pv+pu, 
scaling by 1: 1v=v1=v. 

4. Verify if the set S={(1,0,1,1),(2,0,-1,1),(2,0,1,-1)} is linearly independent in R4. 
Solution. Let a(1,0,1,1)+b(2,0,-1,1)+c(2,0,1,-1)=(0,0,0,0). This leads to a linear system 
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. Adding equations 3 and 4 side to side we get 2a=0, i.e. a=0. Subtracting 

equation 3 from equation 1 we get 3b=0, i.e. b=0. Plugging a=b=0 into equation 1 we get c=0. 
Hence the answer is YES, the set is linearly independent. 


