Linear Algebra with Geometry - Midterm 2 JAN 10, 2019

 \mathbf{x}

1

1

1

1) Show that for every vector space V and for every set of vectors $\{v_1, v_2, ..., v_n\}$ span $(v_1, v_2, ..., v_n) =$ span $(v_1, v_1+v_2, v_2+v_3, ..., v_{n-1}+v_n)$. **Solution**. Let A= span $(v_1, v_2, ..., v_n)$ and B = span $(v_1, v_1+v_2, v_2+v_3, ..., v_{n-1}+v_n)$. We must show that B \subseteq A and B \supseteq A. If w \in B then w = $a_1v_1 + a_2(v_1+v_2) + a_3(v_2+v_3) + ... + a_n(v_{n-1}+v_n) = (a_1+a_2)v_1+(a_2+a_3)v_3+$ $\dots + a_nv_n \in$ B. In the other direction, if u \in A then u = $b_1v_1 + b_2v_2 + ... + b_nv_n$. We have to express u as a linear combination of $v_1, v_1+v_2, v_2+v_3, ..., v_{n-1}+v_n$, hence we must find $c_1, ..., c_n$ such that $b_1v_1 + b_2v_2 + ... + b_nv_n = c_1v_1 + c_2(v_1+v_2) + c_3(v_2+v_3) + ... + c_n(v_{n-1}+v_n) = (c_1+c_2)v_1 + (c_2+c_3)v_3 + ... + c_nv_n$. One possibility is to find find $c_1, ..., c_n$ such that $c_1+c_2 = b_1, c_2+c_3 = b_2, ..., c_{n-1}+c_n=b_{n-1}, c_n = b_n$. Clearly, putting $c_n=b_n, c_{n-1}=b_{n-1}-c_n = b_{n-1}-b_n, ..., c_1=b_1-b_2$ does the trick.

2) Find A⁻¹ for A =
$$\begin{bmatrix} 4 & 3 & 3 & 2 \\ 2 & 2 & 2 & 2 & 1 \\ 2 & 1 & 2 & 2 & 1 \\ 2 & 1 & 1 & 2 & 1 \\ 2 & 1 & 1 & 2 & 1 \\ 2 & 1 & 1 & 1 & 1 \end{bmatrix}$$
. Verify your solution by matrix multiplication.

Solution. It is easy to notice that rows of A are linearly dependent $(r_1 = r_2 + r_5)$ so the matrix is not invertible.

3) W and U are subspaces of V, W∩U={Θ}, {w₁,...,w_k} is a basis for W, {u₁,...,u_m} is a basis for U. Prove that the set {w₁,...,w_k,u₁,...,u_m} is a basis for W+U = {w+u:w∈W ∧ u∈U}.
Solution. Obviously span({w₁,...,w_k,u₁,...,u_m}) = W+U. We must show that {w₁,...,w_k,u₁,...,u_m} is linearly independent. Suppose, for some a₁, ..., a_k,b₁, ... b_m, a₁w₁+...a_kw_k+b₁u₁+...+b_mu_m =. Then a₁w₁+...a_kw_k = -b₁u₁-...-b_mu_m. But this means that a₁w₁+...a_kw_k and -b₁u₁-...-b_mu_m both belong to W∩U, hence both are equal to Θ (the zero vector) and, consequently, a₁, ..., a_k,b₁, ... b_m = 0

4) Solve (in **C**) the equation det
$$\begin{bmatrix} 1 & 1 & 1 & x \\ 1 & 1 & x & 1 \\ 1 & x & 1 & 1 \\ x & 1 & 1 & 1 \end{bmatrix} = 0.$$

Solution. Row operations $r_1 - r_2$, $r_2 - r_3$ and $r_3 - r_4$ yield
$$\begin{vmatrix} 0 & 0 & 1 - x & x - 1 \\ 0 & 1 - x & x - 1 & 0 \\ 1 - x & x - 1 & 0 & 0 \\ x & 1 & 1 & 1 \end{vmatrix}$$
. Taking out the common factor in rows 1,2, and 3 we get $(1 - x)^3 \begin{vmatrix} 0 & 0 & 1 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & -1 & 0 & 0 \\ 1 &$