1. Calculate
$$\left(\frac{\sqrt{2}+i\sqrt{2}}{-\sqrt{3}+i}\right)^{2004}$$

- 2. Find all complex numbers z satisfying the equation $i\overline{z}z^3 = 8|z|$
- 3. Let (G,#) be a group. Consider (G^X ,*) where X is any set and $(\forall x \in X)(f^*g)(x) = f(x)\#g(x)$. Prove that (G^X ,*) is a group.
- 4. Is the set of all odd integers a group with respect to the operation * defined as k*m=k+m-3?

Midterm 1, year 2005

1. Calculate
$$\left(\frac{1+\sqrt{3}+(1-\sqrt{3})i}{2+2i}\right)^{55}$$

- 2. Find all complex numbers z satisfying the equation $(z-2+j)^4+1=0$
- 3. Verify if $(\mathbf{R}^+, *)$ is a group, where $a^*b=a^2b^2$.
- 4. Verify if $\mathbf{Q}(\sqrt[3]{2})$ is a field with respect to ordinary addition and multiplication. If the answer is YES, verify if it is isomorphic to $\mathbf{Q}(\sqrt{2})$.

Midterm 1, year 2006

- 1. Is (**R**,#, \triangle) a field where, for every *x*,*y* from **R**, *x*#*y*= *x*+*y*+1 and *x* \triangle *y* = *xy*+*x*+*y*?
- 2. Find all complex numbers satisfying $z^5 = \overline{z}$. *Hint*: Multiply both sides by z.

3. Calculate
$$\left(\frac{\sqrt{2} + i\sqrt{2}}{1 + i\sqrt{3}}\right)^{10}$$

4. Find a basis of W={(x,y,z,t) $\in \mathbf{R}^4$:2x+y-3z+t=0 \land x-y+2z-t=0}.

Midterm 1, year 2007

- 5. 1-i is a root of $z^4-6z^3+16z^2-20z+12$. Find the remaining roots.
- 6. Is the set $\{x^2, 2^x, \cos x\}$ linearly independent (over the field **R**)?
- 7. Let $X = \{z \in \mathbb{C}: |z| \ge 1\}$. Is X a group with respect to multiplication of complex numbers?
- 8. Use complex numbers to calculate $\sin \frac{\pi}{12}$. *Hint: Use division of complex numbers.*

Midterm 1, year 2008

- Find all complex numbers satisfying z³ = z̄. Hint: *multiply both sides by z and compare absolute values*.
 C is the set of complex numbers, * is regular multiplication and x#y=(-x)+(-y). Is (C,#,*) a field?

Represent the complex number $\left(\frac{\sqrt{2}+i\sqrt{2}}{1-i\sqrt{3}}\right)^{768}$ in the standard form a+b*i*. Hint $\sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}$, $\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$ 3.

4. Let U and W be subspaces of a vector space V over a field **F**. Show that $U \cap W$ is a subspace of V.

Midterm 1, year 2009

- 1. Let $z=r(\cos\alpha+i\sin\alpha)$, $w=t(\cos\beta+i\sin\beta)$. Show that $\frac{z}{w} = \frac{r}{t}(\cos(\alpha-\beta)+i\sin(\alpha-\beta))$. Calculate $\cos\frac{\pi}{12}$.
- 2. Find all complex numbers z satisfying the equation $i(\overline{z})^3 z = 8|z|$
- 3. V is a vector space over a field F. Show that for every two subspaces W and U of V, $W \cap U$ is a subspace of V. Show that there exist such V, W and U that $W \cup U$ is not a subspace of V.
- 4. Prove that if $\{v_1, v_2, \dots, v_n\}$ is linearly independent then so is $\{v_1, v_1+v_2, v_1+v_2+v_3, \dots, v_1+\dots+v_n\}$.