Chapter 1
Complex Numbers

The Number Story

To express basic numerical facts of life (likenéive two horses”, “he has four dogs”)
natural numbers are enough and people living imipive” societies were content with
these. In time, the need to share necessitatemlinttion to the language words liéhalf
anda quarter, that heralded the era of fractions. | have taugNer the years, students of
different nationalities and they all confirm theepence of equivalents afhalfanda quarter
in their native languages. On the other hand, ehgst to come across a language containing
a single word meaningegative onelt proves to me that positive rational numbersenesed
long before people realized the existence and lrsefs of negative numbers. | believe, the
concept of negative numbers appeared fairly latestory, with the development of trade and
the idea otreditanddebt | don’t know whether the ancient Greeks were gisiegative
numbers, but they certainly knew abautional numbers. They were the first to realize that
square root of 2 cannot be expressed as a quofiénb integers. The climax of the ancient
theory (and practice) of numbers was the invenbiorera Zero was invented several times,
independently, in different parts of the world, awntually was imported to Europe from
India, by Arab merchants in the Middle Ages.

From today’s point of view, we can look at the dirgtof numbers as the constant
effort to create more “complete” system in the sethat more and more types of equations
become solvable. If we want all equations of thenfg+a=b, where a and b are natural
numbers to be solvable we must admit the existehoegative integers and of zero. To solve
equations of the formxab=c, where a,b and c are integers we need theepbotfractions
and, consequently of rational numbers. Notice thiate we admit rational numbers as
solutions of our equations, we can also admit naficoefficients, without having to extend
the set of potential solutions, i.e. all equatiohthe form ax+b=c with rational coefficients
(and &0) have rational solutions. When it came to solpotynomial equations of higher
degrees situation became more complicated. Evecotingruction of the set of real numbers
was not enough to ensure solvability of all polymarequations. We can easily construct a
nonsolvable polynomial equation with integer caréiints and the degree as small as 2, for
example £+1=0. It turned out that the solution is fairly git®. It is enough to admit the
existence of just one more symbol, threaginary uniti, with the property%=-1, and all

polynomial equations become solvable. Of coursmithithg the number i, we must also



admit all the consequences i.e. all multiplicittés and sums of real numbers and

multiplicities of i.

Algebraic systems

Definition 1.1. A binary operatioron a set X is function f:XX - X. The wordbinary refers

to the number of arguments of f.

Definition 1.2. An algebraic systerar simply an algebre a finite sequence (X,f,...,f)

where X is a set and,f,, ..., fyare (binary) operations on X.

Traditionally, we use symbols like +,*,-\ to deaaperations and we place them between the
arguments writing a+b rather than +(a,b). For any arguments x and y, f(x,y) is called “the
result of fon x and y".

The definition of aroperationsays that the result of the operation f for ereny

arguments x and y from a set X belongs to X Wetlsay that X is closed with respect to the

operation for closed under. fFor exampldr is closed under addition, subtraction and

multiplication, which simply means that the sune thfference and the product of any two
real numbers is a real number. TheMelf natural numbers is not closed under subtraction
and is not closed under division.

Sometimes it may be necessary to consider opesatibother “arities” — unary (one
argument) operations, and in general n-ary (n-asguyoperations.

An algebraic operation need not be anything as@atonal as addition or
multiplication. In fact it may be absolutely anyfition, even apparently wild and

meaningless, as long as it assigns elements ofp4ite of elements of X.

Example 1.1. Consider the operation * defined on a set X(as\[1X) x*y=x. The definition
means that * assigns to every pair (x,y) the Btetnent of the pair. It may not be very
exciting but it is a perfectly legal algebraic ogtesn.

Example 1.2. Another silly but formally correct example is a stant function & that assigns
the same element &f, for example 7, to every pair (x,y) frofxZ, i.e. (Ox,y0Z) x&y=7.
Example 1.3. The following definition Whenever | am given a pair (x,y) | toss a coin and
chose x if it is heads, or y otherwisg illegal because it may happen that presertethie



second time with the same pair (X,y) you will chdg&erently, so your procedure does not
define a function.

Example 1.4. Subtraction. It is an operation on the set of iated, but is not an operation
on the set of natural numbe¥sbecause in the case of N+he result of subtraction does not

belong to X for some pairs of natural numbers2(-1).

And now let us do something really wild.
Example 1.5. Arithmetic modulon. First recall thak modn denotes the remainder of the
division ofk by n. Letn be a positive natural number. Consider theZge{0,1, ... n-1}. For
any two numbers a and b frafiy we define theisum modulm as &l,b=(a+b)mod.
Correspondingly, we define tipeoduct modulo ras al,b=(ab)mod. By the definition of the
remainder of the division hy, both &l,b and &l,b are elements &,. Symbols],, andll,
are a nuisance so whenever there is no risk of@ntpiwe shall simply writé] or [1. We
must only remember that iZ£,[1) O denotes addition mod 7 and ifs(CJ) — mod 5. In these
finite algebras we have all sorts of funny ideastiThings like two plus two is zerobr
“three times three is ohare commonplace, as long as you do your arithorfetod 4”.
Example 1.6. Let ZOO={a cow, a dog, a frog}. We define an opemat+ on the set ZOO by

means of theperation table

+ | cow| dog|frog

cow|cow| dog|frog

dog| dog|frog|cow

frog |frog|cow| dog

This is another way of saying cow+cow=cow, cow+didbag; cow+frog=frog, dog+cow=dog
and so on. Those poor darlings who ask now “Buttwlbas itmean thata dog times a frog
is a dog? are kindly requested to read this chapter agaimfthe beginning, because it
“means” nothing (and that's the whole fun). On dtieer hand, some readers may notice, that
our + operation is closely related to the operatioinom Example 1.1, namely this is what
we get if we puh=3 and identify O with the cow, 1 with the dog @wdith the frog.

Example 1.7. Let X=Y", i.e. X is the set of all functions mapping Y intoWe will denote
by - the operation of composition of functions. Theutesf this operation is a new function
feg from Y into Y, whose value on everyly is defined as ¢Q)(y)=f(g(y)).

Example 1.8. Symmetric difference. For any set X @enotes the set of all subsets of X. In
addition to the well-known set operations of unimersection and set difference we will



consider the operation of tsgmmetric differencdefined as AB=A\B[IB\A. Obviously, if
A and B belong to’2then so do A\B and B\A and so does their union.

Fields
Definition 1.3. An algebra (G,*) is called a groufb
(@) (Ua,b,d1G)a*(b*c) = (a*b)*c  (* is associative)
(b) (C(EDG)(OxOG) e*x=x*e=x (G has the identity eleme)t
(c) (DaG)((bOG)a*b=b*a=e (every element of G is invertible)

A group is called abeliafor commutativiif
(d) (Oa,dJG)a*b=b*a (* is commutative)

Example 1.9. (2 %), (Z.,0), (R,+), Z,+), (R*,-) are abelian groups. The dot in the last
example denotes ordinary multiplication.

Example 1.10. (R,-) is not a group because 0 is not invertible unadtiplication.

Definition 1.4. An algebra [,#,*) is called a fieldff
@) (F.#) is an abelian group with the identity element e

(b) * s associative

(© * Is commutative

(© * has an identity element e

(d)  for every element x d%, such that %e, there exists y ifr such that x*y=y*x=e
(e) for every x,y,2IF x*(y#z)=(x*y)#(x*z)

() F has at least 2 elements

It is easy to see that conditions (b)-(d) stat¢ @Rde},*) is a commutative group.

Fields are modeled on the set of real numbers adthtion as the first operation (#)
and multiplication as the second (*). Conditionigeknown aghe distributivity law we say
that * is distributive with respect to #. IR (+,-) multiplication is distributive with respeact t

addition but not the other way around, herRe,¢) is not a field.

Example 1.11. For every prime number Z§,0,00) is a field.

Example 1.12. (Q(\/B) ,+,-) is a field for every integer p.




Example 1.13. (RxR,+,-) where + and - are defined “componentwise’,(a,b)+(c,d) = (a+c,
b+d) and (a,b) - (c,d) = (a-c, b-d) is NOT a fisldce no element of the form (0,b) or (a,0) is

invertible.

Example 1.14. (RxR,+,-) with componentwise addition and multiplicatdefined as follows:
(a,b)-(c,d) = (ac-bd,ad+bc) is a field.

Definition 1.5. The set of complex numbers is the Gatf all expressions of the form a+bi,

where a and b are real numbers and i is an objeti&(real number) satisfying the condition
i%=-1. Symbolically,C={a+bi | a,lIR Oi’=-1}. For a complex number z=a+bi, the two real
numbers a and b are referred to as#a part, Rez, and themaginary part, Inz, of z,

respectively. We write then a=Ré=Inmz.

There is no point in pondering the question “Butiisi thing reallyis?”. There is
no more sense in this question than in “What thesgroot of 2 really looks like?”. The
concept of an irrational number was just as hagtasp to our ancestors, accustomed to
integers and ordinary fractions, as the concephdmaginary number is to us. Our worry
should rather be “Can we build a consistent thebryumbers (an algebraic system) that
includes all real number and the imaginary unit By “consistent theory” we mean a system
that preserves all the basic properties of aritiomggterations on real numbers, such as
commutativity of addition and multiplication, assattvity and the like. The answer depends
of course on how are we going to define additioth mwultiplication. Let us define those
operations in the most natural way, as if “i” whe variable x in a binomial a+bx, only,
whenever we come acrogsie replace it with —1. Hence

(atbi)+(c+di) = (a+c)+(b+d)i

(a+bi)(c+di) = ac+adi+bic+b8i= (ac-bd)+(ad+bc)i
It can be easily verified that both operations@mmutative and associative. Let us verify
associativity of multiplication:

[(atbi)(c+di)](e+fi) = [(ac-bd)+(ad+bc)i](e+fi) =ace-bde-adf-bcf)+(acf-bdf+ade+bce)i

while

(at+bi)[(c+di)(e+fi)] = (a+bi)[(ce-df)+(cf+de)i] =dce-adf-bcf-bde)+(acf+ade+bce-bdf)i

so the expressions are identical. Distributivityrafltiplication with respect to addition can be
verified in the same way. It is worth noting thaery real number is also a complex number

(whose imaginary part is equal to 0), hence thetitjeelements of addition and



multiplication of real numbers (0 and 1) are memsldIC, and play the roles of identity

elements here as well. The complex number (-a)ti&mbviously the inverse of a+bi with

respect to addition, while-; a 5+ Z_b 51 is the inverse of a+bi with respect to
a“+b” a"+b

multiplication (if a+b#0). Hence the operations on complex numbers haveeabasic

properties of regular addition and multiplicatiae, (C,+,-) is a field.



