
Chapter 1 
Complex Numbers – continued 

 Here comes one of the most important ideas in abstract algebra 

Definition 1.1. Fields (F,+,·) and (X,#,*) are said to be isomorphic iff there exists a bijection 

(i.e. a one-to-one and “onto” function) f:F→X such that  

(∀a,b∈F) f(a+b)=f(a)#f(b) and f(a·b)=f(a)*f(b) 

Every such function is then called an isomorphism. 

 

The definition of an isomorphism can be easily applied to groups or other algebraic 

systems. Algebras that are isomorphic are considered “essentially identical”. They differ only 

in secondary respects, such as the nature of the elements, the labels we use to denote them, the 

symbols we use for operations and such like, while in “what counts” they are identical. From 

algebra point of view “what counts” is properties of the operations, not only those listed in the 

definition of the particular type of algebra but all of them. 

 

Example 1.1. Consider groups (R,+) and (R+,·). The function f(x)=2x is a bijection and 

f(a+b)=2a+b=2a·2b=f(a)·f(b), hence f is an isomorphism. You can think of (R,+) as an exact 

model of (R+,·). That means, you can predict the result of multiplication of two positive 

numbers watching the result of addition of their representatives in R. In other words, you can 

live without ability to multiply, as long as you can add and you don’t mind calculating powers 

and logarithms. Suppose you want to multiply 0.5 by 8. First, we must find out who 

represents 0.5 and 8. Since f(-1)=2-1=0.5 and f(3)=23=8, 0.5 and 8 are represented by –1 and 

3, respectively. Now, 0.5·8=f(-1)f(3)=f(-1+3)=f(2)=22=4. 

Example 1.2. Consider (Z2,⊕,⊗) and ({a,b},#,*), where # and * are defined as follows 

# a b  * a b 

a b a  a a b 

b a b  b b b 

Since ({a,b},#,*) is isomorphic to (Z2,⊕,⊗) (the isomorphism being f(a)=1, f(b)=0) we can 

claim that ({a,b},#,*) is a field, because all algebraic properties are preserved by an 

isomorphism. 

Example 1.3.  (R×R,+,·) where + and · are defined “componentwise”, i.e. (a,b)+(c,d) = (a+c, 

b+d) and (a,b) · (c,d) = (a·c, b·d) is NOT a field, since no element of the form (0,b) or (a,0) is 

invertible. 



Example 1.4. (R×R,+,·) with componentwise addition and multiplication defined as follows: 

(a,b)·(c,d) = (ac-bd,ad+bc) is a field. This field is isomorphic to the field of complex numbers, 

the isomorphism being f(a+bi)=(a,b).  

 
We can look at the field from last example as another approach to complex numbers. We 

identify complex numbers with points of the Cartesian plane (or vectors anchored at the 

origin) and we call this “geometrical interpretation of complex numbers”. A point z of the 

plane can be identified by its Cartesian coordinates, say (a,b), but also by its polar 

coordinates, i.e. the distance r from the origin and the angle α between positive half-axis OX 

and the segment (0,0)(a,b). Hence, (a,b)=(rcosα,rsinα) or, equivalently, z = a+bi = r(cosα + 

icosα). The last expression is known as the polar form of the complex number z. The 

nonnegative number r is called the absolute value or modulus of z, and is denoted by |z|. 

Clearly if z is given in the standard form z=a+bi then |z|= 22 ba + . The angle α is called an 

argument of z. Since both sine and cosine are periodic function with the period of 2π, a 

complex number has infinitely many arguments. The argument of z that belongs to the 

interval <0;2π) is called the principal argument of z. 

 With every complex number z=a+bi we associate its conjugate number z  = a-bi. 

Geometrically z  is the mirror image of z with respect to the X axis. 

Theorem 1.1 The function f(z) = z  is an isomorphism of C with itself. 

Proof. It is enough to verify by hand that wzwz +=+  and wzzw = .� 

Fact 
2

zzz = . 



Proof. (a+bi)(a-bi) = a2+b2 � 

 

Example 1.5. Here are polar forms of some complex numbers: 

1=cos0+isin0 

-1=cosπ+isinπ 

i=
2

sin
2

cos
ππ

i+  

1+i= )
4

sin
4

(cos2
ππ

i+  

If z=r(cosα+isinα) then z = r(cosα-isinα) = r(cos(-α)+isin(-α)) 

 

Theorem 1.2 (de Moivre Law)  

For every positive integer n if z=r(cosα+isinα) then zn=rn(cosnα+isinnα). 

The theorem follows easily from the following lemma. 

Lemma 1.1. For every two complex numbers z=r(cosα+isinα) and w=p(cosβ+isinβ) we have 
zw=rp(cos(α+β)+isin(α+β)). 

Proof of the lemma. 

zw=r(cosα+isinα)p(cosβ+isinβ) = rp((cosαcosβ-sinαsinβ)+i(cosαsinβ+sinαcosβ)) = 

rp(cos(α+β)+isin(α+β)). The last transformation follows from well-known trigonometric 

identities.� 

 

 De Moivre Law can be used also to calculate roots of complex numbers. 

Definition 1.2. Every complex number w satisfying the equation wn=z is called a root of z of 

order n. 

Suppose z=r(cosα+isinα) and w=p(cosβ+isinβ) is a root of z of order n. Then wn = pn(cosnβ 

+ isinnβ) = r(cosα+isinα). Hence p=n r (in the usual sense) and cosnβ=cosα and sinnβ=sinα. 

Since 2π is the period of sin and cos, we get nβk=α+k2π, or 
n

k
k

παβ 2+= , for k=0,1,2, ... . 

Notice that for every integer p, ππαππαπαβ 2
2222)(

p
n

k

n

pnk

n

pnk
pnk ++=++=++=+ . 

Hence, wk = n r (cosβk+isinβk) = n r (cosβk+pn+isinβk+pn) = wk+pn. This indicates that we only 

get n different roots of z of order n, namely w0,w1, ... ,wn-1 – no more, no less.  

 



Example 1.6. Find 4 1− . 

First -1=cosπ+isinπ. Hence 
4

2ππβ k
k

+=  for k=0,1,2,3. We get four solutions  

z0 = 
2

2

2

2

4
sin

4
cos ii +=+ ππ

,  

z1 = 
2

2

2

2

4

3
sin

4

3
cos ii +−=+ ππ

,  

z2 = 
2

2

2

2

4

5
sin

4

5
cos ii −−=+ ππ

 

z3 = 
2

2

2

2

4

7
sin

4

7
cos ii −=+ ππ

 

 


