Chapter 1
Polynomials

Definition 1.1. A polynomial of degreen over a fieldF is a function g — F of the form

p(x)=ax"+a,.1x"+ ... ax+ay, where gay, ... ,alF and az0. F[x] will denote the set of all
polynomials ovef andF,[x] will denote the set of all polynomials ovErof degree at most
n.

Definition 1.2. An element of F is called a oot of a polynomial p iff it is a solution to the

equation p(x)=0, i.e. if p(t)=0.

We add and multiply polynomials as we do functidhsan be easily verified that the product
of two polynomials of degreesandk is a polynomial of degree+k and the sum is a
polynomial of degree at most maxy).

Lemma 1.1. (Remainder lemma) For every two polynomials f aricbgh F[x] there exist
unique polynomials g and r F{x] such that f(x)=g(x)q(x)+r(x) and<@egr(x)<degg(x).

It can be easily verified that the long divisioga@ithm works in every[x] and it
leads to the result.
Theorem 1.1 (Division theorem, Bezout theorem) An elemeista root of a polynomiad iff
p(x) is divisible by x-t, in other words, there esis polynomiat(x) of degree one less than

that ofp such thap(x)=g(x)(x-t). [

The introduction of the imaginary unitesulted in such a fiel@ that every non-constant
polynomial fromC[x] has roots in the field of coefficien@. This is not a particularly
common situation. For example there are plentyoofsolvable polynomial equationsRjx]

— to mention just a few:>1=0, ¥+x+1=0 and so on. It is even worseQfx] — some
polynomial equations solvable R{x] are not solvable here?»2=0 is as good an example as

any.

Theorem 1.2 (Main Theorem of Algebra)
For every polynomial fX})IC[x] of degree greater O that there exists a complerber z such

that f(z)=0L]



Corollary. Every polynomial fronC[x] of degree n>0 has exactly n roots (a root of
multiplicity k is counted k times).
Proof. Induction on n. A polynomial of degree one lotike a;x+&. Its only root is clearly

%. Consider a polynomidlof degree n+1. By the Main Theorem of Algebleas a root.

By the division theorem there exists a polynorgiaf degree n such th§i)=g(x)(x-t). By
the induction hypothesghas exactly n roots. Those roots, together tyitbrm n+1 roots of
f.

For example De Moivre law guarantees that everyrohial equation of the forn»a=0
with a#0 has exactly n different roots.

Theorem 1.3 If fJR[X] then, for every complex numberzis a root off if and only if Zis a
root off. In other wordsf(2)=0 iff f(Z)=0.

Proof. The theorem follows easily from the fact thatjogation is an isomorphism & with

itself: Letf(x)=ax"+an..x"+ ... ax+a, where aa.1, ... ,a,a0R andf(2)=0. Then

0=0=az'+..+az+a,=az +..+az+a, =a,(2)" +..+az+a="f(2) .0

Corollary. If fIR[x] thenf can be expressed as a product of polynomials Rpthof degree
at most 2 each.
Proof. According to the last theorehihas an even number of non-real roots (i.e. thage w

nonzero imaginary part,, z,...,z,z, plus some real roots,... t. By the division theorem,
fX)=(x=zZ)(x=27)...(x— ) (X - Z)(x—t)...(x—t,) . Each product of two terms of the form
(x—z)(x—2) can be expressed as (x&d)(x-astbd)=x*-2ax+a’+bs, which is a real
polynomial of degree 2.

Corollary. If fR[x] andf has an odd degree thEhas at least one real root.

Proof. According to the Main Theorem of Algekfraas an odd number of roots. The last

theorem implies thédthas an even number of non-real roots. Hence séhe ooots must be

real.[]



