
Chapter 1 
Polynomials 

 

Definition 1.1. A polynomial of degree n over a field F is a function p:F→F of the form 

p(x)=anx
n+an-1x

n-1+ … a1x+a0, where a0,a1, … ,an∈F and an≠0. F[x] will denote the set of all 

polynomials over F and Fn[x] will denote the set of all polynomials over F of degree at most 

n. 

Definition 1.2. An element t of F is called a root of a polynomial p iff it is a solution to the 

equation p(x)=0, i.e. if p(t)=0. 

 

We add and multiply polynomials as we do functions. It can be easily verified that the product 

of two polynomials of degrees n and k is a polynomial of degree n+k and the sum is a 

polynomial of degree at most max(n,k). 

Lemma 1.1. (Remainder lemma) For every two polynomials f and g from F[x] there exist 
unique polynomials q and r in F[x] such that f(x)=g(x)q(x)+r(x) and 0≤degr(x)<degg(x). 
 

It can be easily verified that the long division algorithm works in every F[x] and it 
leads to the result. 
 
Theorem 1.1 (Division theorem, Bezout theorem) An element t is a root of a polynomial p iff 

p(x) is divisible by x-t, in other words, there exists a polynomial g(x) of degree one less than 

that of p such that p(x)=g(x)(x-t). � 

 

The introduction of the imaginary unit i resulted in such a field C that every non-constant 

polynomial from C[x] has roots in the field of coefficients C. This is not a particularly 

common situation. For example there are plenty of non-solvable polynomial equations in R[x] 

– to mention just a few: x2+1=0, x2+x+1=0 and so on. It is even worse in Q[x] – some 

polynomial equations solvable in R[x] are not solvable here: x2-2=0 is as good an example as 

any. 

 

Theorem 1.2 (Main Theorem of Algebra) 

For every polynomial f(x)∈C[x] of degree greater 0 that there exists a complex number z such 

that f(z)=0.� 

 



Corollary. Every polynomial from C[x] of degree n>0 has exactly n roots (a root of 

multiplicity k is counted k times). 

Proof. Induction on n. A polynomial of degree one looks like a1x+a0. Its only root is clearly 

1

0

a

a−
. Consider a polynomial f of degree n+1. By the Main Theorem of Algebra f has a root t. 

By the division theorem there exists a polynomial g of degree n such that f(x)=g(x)(x-t). By 

the induction hypothesis g has exactly n roots. Those roots, together with t, form n+1 roots of 

f.� 

 

For example De Moivre law guarantees that every polynomial equation of the form xn-a=0 

with a≠0 has exactly n different roots. 

Theorem 1.3 If f∈R[x] then, for every complex number z, z is a root of f if and only if z is a 

root of f. In other words, f(z)=0 iff f( z )=0. 

Proof. The theorem follows easily from the fact that conjugation is an isomorphism of C with 

itself: Let f(x)=anx
n+an-1x

n-1+ … a1x+a0, where an,an-1, … ,a1,a0∈R and f(z)=0. Then 

0101 ......00 azazaazaza n
n

n
n +++=+++== = 01...)( azaza n

n +++ = )(zf .� 

 

Corollary. If f∈R[x] then f can be expressed as a product of polynomials from R[x] of degree 

at most 2 each. 

Proof. According to the last theorem f has an even number of non-real roots (i.e. those with 

nonzero imaginary part) kk zzzz ,,...,, 11  plus some real roots t1,…,tq. By the division theorem, 

f(x)= ))...()()()...()(( 111 qkk txtxzxzxzxzx −−−−−− . Each product of two terms of the form 

))(( ss zxzx −−  can be expressed as (x-as-bsi)(x-as+bsi)=x2-2aax+as
2+bs

2, which is a real 

polynomial of degree 2. � 

Corollary. If f∈R[x] and f has an odd degree then f has at least one real root. 

Proof. According to the Main Theorem of Algebra f has an odd number of roots. The last 

theorem implies that f has an even number of non-real roots. Hence some of the roots must be 

real. � 


