Groups
Definition 1.1. An algebra (G,*) is called a grouib

(a) * is associative

(b) G has an identity elemeat

(c) every element of G is invertible
The group is called abeliah

(d) * is commutative.

Example 1.1. (2°,%), Z,,0), (R,4),(Z,+), (R*,) are groups. The first two cases were
considered in the previous chapter, the other laveoas. They are all abelian groups. The dot
in the last example denotes ordinary multiplication

Example 1.2. (R,-) is not a group because 0 is not invertible unaldtiplication.

Example 1.3. For every positive integer nZ{,[J) is a group. See Proposition 1.1.
Example 1.4. (Z6,[1) is not a group because 2 is not invertible.

Example 1.5. Let PERM(X) denote the set of all bijections frommnxo X. (PERM(X)¢) is a
group, in general it is not commutative. In theecasn-element set X we use the symbgl S
instead of PERM(X), and the group.($is called the symmetric group on n elements.
Example 1.6. Let X be any set and leG(#) be a group. Consider the pa®‘(*) with the *
defined as (f*g)(x)=f(x)#g(x). * is obviously an epation onG*. It is associative because #
is. The identity element for * is Hefined as{x)=e for every XxIX, with e denoting the
identity element o6. The inverse element to a functidnG* is the function T defined as
f1(x)=(f(x)) "}, where thé* on the right hand side denote the inverse witheeisto #. Notice

that our * symbol has nothing to do with the ordinary invefisection.

Example 1.7. Q(\/B) ={a+ b\/B -a,l1Q}. (Q(\/B) ,+) is a group for every numbpr
Example 1.8. Q(\/E) —{0} is a group with respect to regular multiplicatibtere we must
verify first that the set is closed under multiption. Take two elements fro@(~/2) —{0},
a+by2 andc+d+/2, and consideta +bv/2)(c + d+/2) = ac + 2bd + (ad +bc)/2. The last

number is in the form required for eIementsQif\/E) and is certainly different from 0 —
because it is the product of two nonzero real numbdultiplication is obviously associative

in Q(\/E) —{0} because it is associativel The identity element for multiplication is 1and

1 = 1+0y/2 belongs toQ(+/2) —{0} . To prove that every element @(v'2) —{0} is invertible



1 _ a-hby2 _ a
a+b/2 (a+bV2)(a-by2) a’-2b°

we transform the arithmetic inverse af by/2 :

t _ sz J2 and obtain that it belongs t@(\/i) —{0} . This group is also abelian.
a? -

Theorem 1.1. (Z,—{0}, O) is a group iff n is a prime.

Proof. () Recall that n is a prime iff for every two integ and g, n|pqg implies n|q or n|q
(n|p means “n divides p”). This implies that foygnd{1,2, ... ,n-1} =Z,—{0}, pq is not
divisible by n, hencelpgz0 andZ,,—{0} is closed undefl. Associativity of(] follows from
Proposition 1.1???. Number 1 is obviously the itfgrtement.

Now let us chose an element x frax-{0}. Suppose xIp=xLlq for some
p,q0Z,—{0}. That means xp mod n = xq mod n, which implikat x(p-g) mod n =0, which
in turn implies n|x(pq). Since n is a prime it follows that n|x (impddsias X}{1,2, ...
,n—1}) or n|p-g. Now,—n+2<p—qg<n-2, and the only number in that interval divisibierbis
0. Hence p=g. We have shown that the numbigis x(12, ... xd(n-1) are A1 pairwise
different members af ,—{0}. Since Z,—{0} has exactly r1 elements, each element of
Z,—{0} appears somewhere on the list, hence one ohtisel and x is ivertible.

(=) If nis a composite number then n=pq for somé&lZg-{0}. But then @1g=0, so
Z,—{0} is not closed under].]

Theorem 1.2. In every group (G,*) with identity e, and for eyex,d 1G we have
(1) (a*b)t=b**a™*
@ @H*'=a
Proof. To prove (1) it is enough to notice that'la *)*(a*b) = ((b**a )*a)*b =
(b™*(@**a))*b = (b **e)*b = b **b = e. Part (2) is obvious.

Theorem 1.3. (Cancellation law)
In every group (G,*), for every a,lbJ& if a*b=a*c then b=c.
Proof. Let e denote the identity element of *. a*b=a*qimes a**(a*b) = a **(a*c). By

associativity of * we have (&a)*b = (a **a)*c, hence e*b = e*c and b=Cc.

Definition 1.2. In every group (G,*) with identity e, and for evetyG we will denote &= e
and for all N, & = a*d ™t and &" = ().



Proposition 1.1. In every group (G,*) for every@G, and for every integer n>0' a d" **a.

Proof. It is enough to show thaf&a = a*d"*. We will prove it using induction on n. For

n=1 there is nothing to prove, sindea Suppose the equality holds for some n and densi

n+1

d

dt=ard by Definition 1.2

= a* (d*a) by induction hypothesis
= (a*d"™*a by associativity of *

= d*a by Definition 1.2 again.

Theorem 1.4. Let (G,*) be a group, albG and m,qalZ. Then

L a'=@E)=@"

(2) d%a"=d""

3 @)"=d"
Proof. (1) First we prove thata= (d)". For re0 it follows from Definition 1.2. For n<0 we
put k=—n and we write d = &' = (@) ™) " = @) = (@)™

Now we take care of the equality Y = (d)™*.We will prove it by induction on n. For

n=0 it is obvious. Suppose n>0 and the equalitgsédr n-1.

@H"=a*@hH"™* by Definition 1.2

=a*@H™* by the induction hypothesis

= (d*a)™ by Theorem 1.2(1)

=@ by Proposition 1.1

We are done in cased. Now suppose n<0. We put«=
@H"=(@h* by definition of k

= (@Y™ by Definition 1.2, we may use it as k>0
=((@)™H* by the initial part of the proof

=d Theorem 1.2(2)

=a" by definition of k.

(2) First we will prove that for every '8 = a*d". For n®0 it follows from Definition 1.2.
Suppose m<0 and put km. Now
=@ by ()

= (@Y ? by definition of n



= @hH) Ha™h* follows from the nonnegative m case of (2) witti kn place of m and
a'in place of a
= a*d" from (1) Theorem 1.2(2).



