Vector Spaces
Linear algebra is the theory wdctor spaces (or linear spaces - these are synonyms). It
was developed as an abstract theory of vectoredsaw them from physics, and also as a tool

for systematic studies of systems of linear equatio

Definition 1.1. SupposekR,+,x) is a field with 0 and 1 the identity elements foandx
respectively, and V is a nonempty set. Suppose tlsean operationl defined on V, and for each
pCF and for each MV there exists a unique elementpWcalled the multiple (or product) of v
by p. If

() (v,0) is an abelian group,

(it) (OpUF)(Cu,viV) p-(ulv) = (p-u(p-v)

(iii) (Op,o0F)(0vDV) (q+p)-v=(a-vH(p-V)

(iv) (Op,q0F)(DvOV) (g%p)-v=q-(p-V)

(v) (OvOV) 1-v=v

then the set V with the operationsand - is called gector space (or alinear space) overF.

Remarks

e A vector space is not an algebra in the usual s@sseis not an operation on V.

* Elements of V are called “vectors” and thosé-ef “scalars”. In this approach, the
frequently asked question “but what actually 1Seater?” is meaningless. Absolutely
everything, from a set to an elephant, can be ettwéif somebody defines the right
operations on the right sets. One rather “serves @ector than “is” a vector. In other words
being a vector is more an occupation than an att&iliPresented with an object and asked “is
this a vector?” the right answer is “in what vectpace?”

* We usually ignore both symbols - andnd we write (gp)v instead ofXg)-v. The meaning
of the expression is usually clear from the context

» Traditionally, we use the + symbol for both addise- of vectors and of scalars. Under these
conventions part (iii) looks like (g+p)v=qv+pv.

» We will use the 0 (zero) symbol for the identitgmlent of scalar addition al(theta) for

the zero vector, i.e. the identity element of veetddition.



Example 1.1. Let (F,+,-) be a field. We denote B the seFxFx ... xF of all n-tuples of
elements of. For every two n-tuples {a@, ... ,a) and (k,by, ... ,h) and every scalar(fF we
define (@, ... ,@)+(byby, ... 1) = (@t+bathy, ..., atby) and p(aa, ... ,a)= (pa,pa, ...
,pa,). These operations are knowncasponentwise addition and scalar multiplicatioR” is a
vector space ovdf with respect to these two operations. In partigwdenn=1 we get that
every field is a vector space over itself.

Example 1.2. 2" is a vector space over the fiéld with respect to the symmetric difference as
vector addition and 0-AZ and 1-A=A as the scalar multiplication. Here vestre sets and
scalars are the numbers 0 and 1.

Example 1.3. RR is a vector space ovBrwith respect to ordinary addition of functions and
multiplications of a function by a constant. Heeetors are functions and scalars are real
numbers.

Example 1.4. For any set X and any fielg, F* is a vector space with respect to ordinary
function addition and scaling. See example ??hapter 2.

Example 1.5. R overQ with ordinary addition and multiplication. Herecters are real numbers
and scalars are rational numbers.

Example 1.6. Q overR is NOT a vector space. Here the would-be vect@sational numbers
and scalars are real numbers and the productadfcaal number by a real number may an
irrational number.

Example 1.7. V={(a1,&,as,a)IR" a+ap+2a-a,=0 and 3a-2a+as+a=0} is a vector space over
R with respect to componentwise addition and mudgtion. Letx=(X1,X2,X3,X4) and
y=(Y1,Y2,¥3,Ys) be vectors from V. We must show that br#ly and [y belong to Vx+y =
(X1,X2,X3,Xa) + (Y1,Y2,Y3,Ya) = (Xa+Y1,XoHY2,X3+Y3,XatYs). This vector belongs to v if and only if
(Xa+y1) + (Xaty2) + 2(%s+Ys) = (Xatya) = 0 and 3(x+y1) — 2(XztY2) + (XatYs) + (Xatys) = 0. The
first equality is equivalent to (¥xo+2x3—X4) + (Y1+Yy2+2ys—Y4)=0 which is true becausegy[1V.
The second one is equivalent to {8x2x,+X3+X4)+(3y1—2Y,+Ys+Y4)=0 which is true for the same
reason. A similar argument shows thafly. The zero vector (0,0,0,0) and the inverse to any
vectorx from V belong to V for obvious reasons. The rermarconditions hold because V is a
subset oR*.



Definition 1.2. Suppose V is a vector space oketet W be a subset of V. If W is a vector
space oveF (with respect to the same vector addition andascalltiplication then W is called a
subspace of V.

Proposition 1.1. Let V be a vector space over Then

@ CvOVv) Ov=0

(b)  (OpLF) po=0

() @pOF)(EvIV) (-p)v=p(V)=—(pV)

Proof. (a) Ov=(0+0)v=0v+0v. Hence, by the cancellation,lave have Ov®.

(b) pPP=p(O+BO)=pO+pO and we use the cancellation law again.
(c) To prove that{p)v=—pv it is enough to notice thatg)v+pv=(p+p)v=0v=0 by (a). To
prove that pfv)=—(pv) we write ptv)+pv=p(v+v)=p@O=0 by(b)[

Theorem 1.1 A nonempty subset W of V is a subspace of V iff

€)) COu,wW) u+wiw

(b)  (OpOF)(OuOW) pulW
Proof. “="is obvious because a subspace must be closed batteoperations.
“00” It is enough to show that W is subgroup of V. Toaditions (ii) — (v) are obviously
inherited by every subset of V. Condition (a) gn&eas that W is an algebra, associativity and
commutativity of the vector addition are inherifeain V. Since W is nonempty we can chose
any wW and putting p=0 in (b) we obtain OWV, which, thanks to Proposition 1.1 means
OOW. Moreover, for every WW, its inverse;-wW because, by Proposition 1-4y=(-1)w,

and by the condition (b) of the present theorenm ywi#t-1, (-1)wW.[]

Example 1.8. The set of all differentiable functions is a sutzspmRF~.

Example 1.9. The set of all finite subsets bfis a subspace in the spaced2fined in Example
1.2. Obviously, the symmetric difference of twatinsets is finite, OAE is finite and 1A=A is
finite whenever A is finite.

Example 1.10. W={(x,y) OR% x=0}. W is not a subspace &%. It is closed under vector addition
but is not closed under scalar multiplicationl }(1,1) = €1,-1)O0W.



Example 1.11. W={(x,y,z)JR?: x*~y*=0}. W is not a subspace Bf. It is closed under scalar
multiplication, but not under vector addition, farample (1,1,1)+1,1,1)JW and (1,1,1) +
(-1,1,1)=(0,2,2Y)W.

Recall that the relation of inclusion is a parteder on any family of sets, in particular on
any family of subspaces of a vector space.
Definition 1.3. Let SV (a sulset, not necessarily a sgtace). Then byspan(S) we will denote
the smallest subspace of V containing S. We calh&p) thesubspace spanned by S.
Proposition 1.2. Let V(S) denote the set of all subspaces of V dointg S. Then

span(S) =("V(9)

Proof. It is enough to show thamV(S) Is a subspace of V and that is an easy conseqoénce

Theorem 1.1

Definition 1.4. Given vectors Mo, ... ,Viy and scalars;ag, ... ,&, the sum avi+aVot ... +aV, IS

called thdinear combination of vectors v,v», ... ,\\, with coefficients gap, ... ,a&.

Example 1.12. The vector (3,0,4) frorR® is a linear combination of (1,2,2),(2,1,3) ancB(0)

with coefficients 1,1 andl. Indeed 1(1,2,2)+1(2,1;3)(0,3,1)=(1+20,2+1-3,2+3-1)=(3,0,4).
Notice that we may also write (3,0,4H1,2,2)+2(2,1,3)+0(0,3,1) or (3,0,43(1,2,2)+3(2,1,3)
+1(0,3,1). The lesson from this example is thagéetar may be represented in various ways as a

linear combination of given vectors.

Definition 1.5. For every set SV, lin(S will denote the set of all linear combinationsvettors

from S.
Example 1.13. Ry[x]=lin{1,x,x?, ... X%}
Example 1.14. Q(+/2)=lin({1, +/2 }). Here we treaf(+/2 ) as a vector space over the field of

rational numberg).

Proposition 1.3. For every set 8V, lin(S) is a subspace of V.




Proof. Suppose w,uspan(S) andpF. Then, for some scalarga, ... ,a,b1,b,, ... ,kand for
some Vectorsiwa, ... Vi ,X1,X2, ... % , all coming from V, we have uswa+aV,+ ... +aVv, and
w=bixy+boXxo+ ... +thxk. Now u+w= avitaVot ... +avatbixg+bxot ... +hxg and pu=
pavitpavaet ... +pavy, which means that u+w and pu belong to lin(S) ckeby Theorem 1.1

lin(S) is a subspace of V.

Theorem 1.2 For every nonempty subset S of a space V lin(Sy¥§)a

Proof. We must show that lin(§span(S) and span(S)n(S). In order to show the first

inclusion it is enough to notice that lin(S) isudbset of every subspace of V that contains S. This
is obvious thanks to Theorem 1.1. To prove thersgaaclusion we point out that lin(S) contains
S — which is obvious and, that lin(S) is a subspddé by Proposition 1.3. Since span(S) is

contained in every subspace of V that containp&(S) is contained in lin(S).

One of the central concepts of linear algebraas of linear independence of sets of
vectors.
Definition 1.6. A finite set of vectors {y,v2, ... ,\n} from a vector space V is said to beearly
independent iff
(O&,a, ... ,al0F) [mvitaVaet ... +aVv, =0 = a=a= ... =3.=0]

A set of vectors that is not linearly independentalled (surprise! surprise!) lineadgpendent.

Notice that the linear independence is a propdrsets of vectors, rather than vectors.
Whenever we sayectors x,y,z are linearly independent what we really mean ibhe set {x,y,z} is
linearly independent.

Example 1.15. The set {(1,0,0, ... ,0),(0,1,0, ... 0), ... ,(0,0, ...1)9,is a linearly independent
subset of".

Example 1.16. {1,x,x?, ... ,X} is a linearly independent subsetRyfx].

A very important property of any linearly indepentiset of vectors S is that every vector
from span(S) is uniquely represented as a lineabamation of vectors from S. More precisely

we have



Theorem 1.3 A set {v;,Vz, ... ,\jof vectors from V is linearly independent iff
(OvOV)(Day,a,. .. ,an,b1,0p, ... .0 0OF) [v=agvitavat ... +&wvn = bivithpvet ... +hv, = (0i) a=Db]
Proof. (=) Suppose v=@;taV,+ ... +av, and v=hvit+byvot ... +hhv,. Subtracting these
equations side from side, we obt&@r(a—b;)v1+(a—by)vot ... +(a—by)Vvns .Since the set {yv,,
... ,Vn} is linearly independent we have-g=0, which means;ab;, for each i=1,2,...,n.
(O) Let us take vO. One way of writing® as a linear combination of vectorswg, ... ,\, is to
put bi=b,= ... =b,=0, i.e.@=0v;+0v,+ ... +0v, so our condition implies that whenever
O=aVitapVot ... +&V, We have &0 for each i=1,2, ...,0.

What Theorem 1.3 really says is that if a vector be represented as a linear combination
of linearly independent vectors then the coeffitseare unique and vice versa.
Theorem 1.4 The set S={y,v2, ... ,W} is linearly independent iff none of the vectorerh S is a
linear combination of the others.
Proof. (=) Suppose one of the vectors is a linear combinaifahe others. Without loss of
generality we may assume thatis the one, i.e.jgaVvi+aVvat ... .&-1Vh1. Then we may write
O=aV1+&Vot ... .a-1Vn1+H(=1)Vi. Since £1) # 0 the set {y,vz, ... ,w} is linearly dependent.
() Suppose now that {wo, ... ,\w} is linearly dependent, i.e. there exist coeffit®a, &, ...
,&, not all of them zeroes, such ti@tav,+avot ... .aVvh. Again, without losing generality, we
may assume that#0 (we can always renumber the vectors so thatrieenith nonzero
coefficient is the last). Since nonzero scalarsrarertible, we have ¥ (—aa, Vi + (—aan )V

+ .. +(—an-1a{1)vn-1u

Theorem 1.5 If vspan(y,Va, ... ,W,) then span(yvy, ... \h)=span(y,v, ... ,V,,V)

Proof. Obviously span(¥va, ... ,\wydspan(y,Vvz, ... ,Vh,V), even if v is not a linear combination
of v1,Vo, ... ,and y. Suppose now thatispan(y,vs, ... ,,,V). This means that for some scalars
P1,P2; --- ., P We have w=fy1+pvot ...+ pvat+pv. Since Wspan(y,Va, ... W), there exist
scalars1,r,, ..., such, that van+rvo+ ... +vn. Hence w=pvi+povot ...+ pVntp(rvatrvat

V) = (prtpr)vat(petpr)vat ... +(ptpr) Ve Which means wispan(y,Va, ... ,V).[]

The concepts of linear independence and spannagg im the definition of a basis of a

vector space.



Definition 1.7. The set S={y,v,, ... ,\h} is a basisof a vector space V iff
(1) span(S)=V, and
(2) S is linearly independent.

Example 1.17. The set S={(1,0,0, ... ,0),(0,1,0, ... 0), ... ,(0,0, 0,1)} is a basis foF". This
basis is callethe standard or the canonical basis for".

Example 1.18. S={1,x,%¢, ... ,X} is a basis oR.[x]. Obviously, span({1,x,% ... X})=R[x]
and in Example 1.16 we explained why S is lineertiependent.

Theorem 1.6 S={v1,V2, ... ,\i} is a basis of a vector space V iff for eveifyW there exist unique
scalars ppy, ... ,p such that v=p/1+povot ...+ Vi

Proof. (=) Since V=span(S), all we have to show is thatassagh,p,, ... ,h are unique, but this
is guaranteed by Theorem 1.3.

(O ) Obviously span(S)=V and the linear independeric follows from Theorem 1(3

Definition 1.8. Let S={v,V2, ... ,\n} be a basis of V and lefW. then the scalars;jp,, ... ,h

such that v=pv1+povot ...+ pVv, are called coordinates of v with respect t®W& will denote the

sequence by [¥= [pup2 --- ,R]s

Example 1.19. The standard basis S 6t is special in that the coordinates of a vectgxgx ...
,Xp) are its “natural” coordinates Xz, ... ,% , i.e. [(4,X2, ... X)]s=[X1,X2, ... ,X]s. This is
obvious as vectors;%(1,0,0, ... ,0),v=(0,1,0, ... 0), ... ,»=(0,0, ... ,0,1) constituting S are
structured so that in every linear combination vo¥,, ... ,v, the i-th coordinate is equal to the
i-th coefficient.

Example 1.20. The set S={(1,1,1),(1,1,0),(1,0,0)} is a basisFor It is easy to check that
[(1,0,0)}=[0,0,1], [(1,2,3)}=[3,-1,-1] and [(2,3,2)]=[2,151].

According to our definition, a basis is a finitet 8f vectors. Not every vector space
contains a finite basis (for example, there isinite basis folR overQ). In this course, though,
we will only consider those vector spaces who desps finite bases. Such vector spaces are

called finite dimensionalThis term is justified by the following definito




Definition 1.9. Let S be a basis for a vector space V. Then [Sllisd the dimensioof V. We
write dim(V)=|S|.

A vector space can obviously have many basesnstuaal question arisesan a vector
space have more then one dimension? Fortunately, the answer is NO, as follows from rileet
theorem.

Theorem 1.7 In a finite dimensional vector space V every twadsmhave the same number of
vectors.

The proof of this theorem makes heavy use of theviing lemma
Lemmal.l. (Replacement lemma, known also as Steinitz lemma)

Suppose the set {w,, ... ,w} is linearly independent and span{w,, ... \W}=V. Then rek and
some n out of the k vectors in {W, ... ,wk} can be replaced be w,, ... ,and y. To be more

precise, there exist subscripisai ... ,i-n such that the s¢tw, ,w, ,...w, ,v,,V,,...,.v,} isa

spanning set for V.

Proof We will prove the lemma by induction on n. For n#4 have a linearly independent set
{v1} and a spanning set f{yv,, ... \W}. Since {v;} is linearly independent, we haveA®. This
implies that \£{ ©} and every spanning set for V must be nonemptyddden (n=1). The set
{w,w,, ... W} spans V. This means that every vector from \panticular \ is a linear
combination of w,wy, ... , and w, so there exist scalarg,p, ... ,px such that y=pyw;+pwo+
...+ pw. At least one jas different from 0 — otherwise would be equal t®. Without loss of
generality we may assume that@. This easily implies thatws a linear combination ofywvs,
Wa, ... , and w-1. Hence, by Theorem 1.5, spaidu,wo, ... ,\Wk-1) = span(y,wi,Wa, ... \W) =
span(w,w,, ... W)=V and we are done.

Now, suppose the set{v,, ... ,Vh+1} is linearly independent, {wws-, ... W} spans V,
and the lemma is true for every n-element linesdependent set, in particular for{v,, ...
,Vn}. Hence ken and some n vectors from {W., ... ,\w} can be replaced by, ... , and y
spans V. Having done this, we wind up with a sired&ment linearly independent set.{ and

a spanning s€tw, , W, ,...,W, ,V;,V,,...,v,}. Obviously, there exist scalars such thai =

[

=aw, +a,W, +..+a,_ W _+bv, +b,v, +...+b Vv, . Moreover, at least one of thésasay a is



different from 0 — otherwise,y; would be a linear combination of,v,, ... ,vh. Now, like in the

first part of the proofw; can be replace in the spanning set hy.v

Proof of Theorem 1.7. Let B={yv», ... Wi} and D={w,wy, ... ,w} be two bases of V. B, being
a basis, is linearly independent and D, being albasis, is a spanning set for V. Hence, by the
replacement lemma, we havekn Now, if we reverse the roles of B and D, we gt ksn.

Notice that the replacement lemma says that #eedfiany linearly independent subset of
V is less than, or equal to the size of any spansét for V.

The following theorem summarizes the most impdnpeaperties of bases.
Theorem 1.8 Suppose V is a vector space, dimVV=n, n>0 an¥.SThen

(1) If |S|=n and S is linearly independent thes & basis for V

(2) If |S|=n and span(S)=V then S is a basis for V

(3) If S'is linearly independent thend|

(4) If span(S)=V then |Sh

(5) If Siis linearly independent then S is a sulb$sbme basis of V

(6) If S spans V then S contains a basis of V

(7) Sis a basis of Viff S is a maximal lineamygependent subset of V

(8) Sis a basis of V iff S is a minimal spannieg for V
Proof (1) Sis linearly independent, and a basis B @ & spanning set for V. Since |S|=n=|B|,
the replacement lemma says that all vectors frorarBbe replaced by all vectors from S and the
result (which is S) is a spanning set for V.
(2) If S is linearly dependent then, by Theorem $.8ontains a proper subset S’ such that
span(S’)=span(S)=V. But the replacement lemma &tao set containing fewer than n=|S|=
=dim(V) vectors spans V, hence S cannot be linegephendent.
(3) and (4) follow immediately from the replacembamma.
(5) Let |S|=k. By the replacement lemma k vectmsifa basis B of V can be replaced by vectors
from S in such a way that the resulting set isamamg set of V. Since the resulting set consists
of n vectors, by (2) it is a basis.
(6) There exist linearly independent subsets oé&bse there exist non-zero vectors in S
(otherwise the space spanned by S would have diore@¥and a single-element set with
nonzero element is linearly independent. Let T beearly independent subset of S with the

largest number of elements. Such a set T exis&usecevery linearly independent subset of V



(hence also of S) has no more than n elements. Shsgan(T), hence span(Sspan(span(T)).
Since span(S)=V and span(span(T))=span(T) we géefltis a linearly independent spanning set
for V, i.e. a basis contained in S.

(7) If S is a basis for V then obviously S is lingandependent. Since span(S)=V, every vector v
from V is a linear combination of vectors from 8,51{v} is linearly dependent. Hence S is a
maximal linearly independent subset of V. On theeohand, if S is a maximal linearly
independent subset of V then, for eveS, adding v to S turns it into a linearly depemide
subset of V, which means thdilspan(S). Hence S is a basis for V.

(8) If S is a basis then, by (4) S is a minimalrspag set for V. On the other hand suppose S is a
minimal spanning set. Then, by Theorem 1.5, Shisdlily independent, i.e. S is a basis far V.
Theorem 1.9 1f W is a subspace of a finite dimensional spadéan dim\&dimV and
dimW=dimV if and only if W=V.

Proof. Any basis of W is a linearly independent subseét o, by(6) is a subset of a basis of V,
hence dim¥dimV. If dimW=dimV then, by Theorem 1.8(1), evergdis for W is also a basis

for V, so W=V as spaces spanned by the same set.



