
Vector Spaces 

Linear algebra is the theory of vector spaces (or linear spaces - these are synonyms). It 

was developed as an abstract theory of vectors as we know them from physics, and also as a tool 

for systematic studies of systems of linear equations. 

 

Definition 1.1. Suppose (F,+,×) is a field with 0 and 1 the identity elements for + and × 

respectively, and V is a nonempty set. Suppose there is an operation ⊕ defined on V, and for each 

p∈F and for each v∈V there exists a unique element p·v∈V called the multiple (or product) of v 

by p. If 

(i) (V,⊕) is an abelian group, 

(ii) (∀p∈F)(∀u,v∈V) p·(u⊕v) = (p·u)⊕(p·v) 

(iii) ( ∀p,q∈F)(∀v∈V) (q+p)·v=(q·v)⊕(p·v) 

(iv) (∀p,q∈F)(∀v∈V) (q×p)·v=q·(p·v) 

(v) (∀v∈V) 1·v=v   

then the set V with the operations ⊕ and · is called a vector space (or a linear space) over F. 

 

Remarks 

• A vector space is not an algebra in the usual sense, as · is not an operation on V. 

• Elements of V are called “vectors” and those of F – “scalars”. In this approach, the 

frequently asked question “but what actually IS a vector?” is meaningless. Absolutely 

everything, from a set to an elephant, can be a “vector” if somebody defines the right 

operations on the right sets. One rather “serves” as a vector than “is” a vector. In other words 

being a vector is more an occupation than an attribute. Presented with an object and asked “is 

this a vector?” the right answer is “in what vector space?” 

• We usually ignore both symbols · and × and we write (qp)v instead of (q×p)·v. The meaning 

of the expression is usually clear from the context. 

• Traditionally, we use the + symbol for both additions – of vectors and of scalars. Under these 

conventions part (iii) looks like (q+p)v=qv+pv. 

• We will use the 0 (zero) symbol for the identity element of scalar addition and Θ (theta) for 

the zero vector, i.e. the identity element of vector addition. 



 

Example 1.1. Let (F,+,·) be a field. We denote by Fn the set F×F× … ×F of all n-tuples of 

elements of F. For every two n-tuples (a1,a2, … ,an) and (b1,b2, … ,bn) and every scalar p∈F we 

define  (a1,a2, … ,an)+(b1,b2, … ,bn) = (a1+b1,a2+b2, … , an+bn) and p(a1,a2, … ,an)= (pa1,pa2, … 

,pan). These operations are known as componentwise addition and scalar multiplication. Fn is a 

vector space over F with respect to these two operations. In particular, when n=1 we get that 

every field is a vector space over itself.  

Example 1.2. 2X is a vector space over the field Z2 with respect to the symmetric difference as 

vector addition and 0·A=∅ and 1·A=A as the scalar multiplication. Here vectors are sets and 

scalars are the numbers 0 and 1. 

Example 1.3. RR is a vector space over R with respect to ordinary addition of functions and 

multiplications of a function by a constant. Here vectors are functions and scalars are real 

numbers. 

Example 1.4. For any set X and any field F, FX is a vector space with respect to ordinary 

function addition and scaling. See example ??? in chapter 2. 

Example 1.5. R over Q with ordinary addition and multiplication. Here vectors are real numbers 

and scalars are rational numbers. 

Example 1.6. Q over R is NOT a vector space. Here the would-be vectors are rational numbers 

and scalars are real numbers and the product of a rational number by a real number may an 

irrational number. 

Example 1.7. V={(a1,a2,a3,a4)∈R4: a1+a2+2a3−a4=0 and 3a1−2a2+a3+a4=0} is a vector space over 

R with respect to componentwise addition and multiplication. Let x=(x1,x2,x3,x4) and 

y=(y1,y2,y3,y4) be vectors from V. We must show that both x+y and py belong to V. x+y = 

(x1,x2,x3,x4) + (y1,y2,y3,y4) = (x1+y1,x2+y2,x3+y3,x4+y4). This vector belongs to v if and only if 

(x1+y1) + (x2+y2) + 2(x3+y3) − (x4+y4) = 0 and 3(x1+y1) − 2(x2+y2) + (x3+y3) + (x4+y4) = 0. The 

first equality is equivalent to (x1+x2+2x3−x4) + (y1+y2+2y3−y4)=0 which is true because x,y∈V. 

The second one is equivalent to (3x1+−2x2+x3+x4)+(3y1−2y2+y3+y4)=0 which is true for the same 

reason. A similar argument shows that pv∈V. The zero vector (0,0,0,0) and the inverse to any 

vector x from V belong to V for obvious reasons. The remaining conditions hold because V is a 

subset of R4. 

 



Definition 1.2. Suppose V is a vector space over F. Let W be a subset of V. If W is a vector 

space over F (with respect to the same vector addition and scalar multiplication then W is called a 

subspace of V. 

Proposition 1.1. Let V be a vector space over F. Then 

(a) (∀v∈V) 0v=Θ 

(b) (∀p∈F) pΘ=Θ 

(c) (∀p∈F)(∀v∈V) (−p)v=p(−v)=−(pv) 

Proof. (a) 0v=(0+0)v=0v+0v. Hence, by the cancellation law, we have 0v=Θ. 

(b) pΘ=p(Θ+Θ)=pΘ+pΘ and we use the cancellation law again. 

(c) To prove that (−p)v=−pv it is enough to notice that (−p)v+pv=(−p+p)v=0v=Θ by (a). To 

prove that p(−v)=−(pv) we write p(−v)+pv=p(−v+v)=pΘ=Θ by(b).� 

 

Theorem 1.1 A nonempty subset W of V is a subspace of V iff 

(a) (∀u,w∈W) u+w∈W 

(b) (∀p∈F)(∀u∈W) pu∈W 

Proof. “⇒”is obvious because a subspace must be closed under both operations. 

“⇐” It is enough to show that W is subgroup of V. The conditions (ii) – (v) are obviously 

inherited by every subset of V. Condition (a) guarantees that W is an algebra, associativity and 

commutativity of the vector addition are inherited from V. Since W is nonempty we can chose 

any w∈W and putting p=0 in (b) we obtain 0w∈W, which, thanks to Proposition 1.1 means 

Θ∈W. Moreover, for every w∈W, its inverse, −w∈W because, by  Proposition 1.1, −w=(−1)w, 

and by the condition (b) of the present theorem with p=−1, (−1)w∈W.� 

 

Example 1.8. The set of all differentiable functions is a subspace in RR. 

Example 1.9. The set of all finite subsets of N is a subspace in the space 2N defined in Example 

1.2. Obviously, the symmetric difference of two finite sets is finite, 0A=∅ is finite and 1A=A is 

finite whenever A is finite. 

Example 1.10. W={(x,y)∈R2: x≥0}. W is not a subspace of R2. It is closed under vector addition 

but is not closed under scalar multiplication, (−1)(1,1) = (−1,−1)∉W. 



Example 1.11.  W={(x,y,z)∈R3: x2−y2=0}. W is not a subspace of R3. It is closed under scalar 

multiplication, but not under vector addition, for example (1,1,1),(−1,1,1)∈W and (1,1,1) + 

(−1,1,1)=(0,2,2)∉W. 

Recall that the relation of inclusion is a partial order on any family of sets, in particular on 

any family of subspaces of a vector space. 

Definition 1.3. Let S⊆V (a subset, not necessarily a subspace). Then by span(S) we will denote 

the smallest subspace of V containing S. We call span(S) the subspace spanned by S. 

Proposition 1.2. Let V(S) denote the set of all subspaces of V containing S. Then 

I )()( SVSspan =  

Proof. It is enough to show that I )(SV  is a subspace of V and that is an easy consequence of 

Theorem 1.1 

 

Definition 1.4. Given vectors v1,v2, … ,vn and scalars a1,a2, … ,an, the sum a1v1+a2v2+ … +anvn is 

called the linear combination of vectors v1,v2, … ,vn with coefficients a1,a2, … ,an. 

 

Example 1.12. The vector (3,0,4) from R3 is a linear combination of (1,2,2),(2,1,3) and (0,3,1) 

with coefficients 1,1 and −1. Indeed 1(1,2,2)+1(2,1,3)−1(0,3,1)=(1+2−0,2+1−3,2+3−1)=(3,0,4). 

Notice that we may also write (3,0,4)=−1(1,2,2)+2(2,1,3)+0(0,3,1) or (3,0,4)=−3(1,2,2)+3(2,1,3) 

+1(0,3,1). The lesson from this example is that a vector may be represented in various ways as a 

linear combination of given vectors. 

 

Definition 1.5. For every set S⊆V, lin(S) will denote the set of all linear combinations of vectors 

from S. 

 

Example 1.13. Rn[x]=lin{1,x,x 2, … ,xn}  

Example 1.14. Q( 2 )=lin({1, 2 }). Here we treat Q( 2 ) as a vector space over the field of 

rational numbers Q. 

 

Proposition 1.3. For every set S⊆V, lin(S) is a subspace of V. 



Proof. Suppose w,u∈span(S) and p∈F. Then, for some scalars a1,a2, … ,an,b1,b2, … ,bk and for 

some vectors v1,v2, … ,vn ,x1,x2, … ,xk , all coming from V, we have u= a1v1+a2v2+ … +anvn and 

w=b1x1+b2x2+ … +bkxk. Now u+w= a1v1+a2v2+ … +anvn+b1x1+b2x2+ … +bkxk and pu= 

pa1v1+pa2v2+ … +panvn, which means that u+w and pu belong to lin(S), hence, by Theorem 1.1 

lin(S) is a subspace of V.� 

 

Theorem 1.2 For every nonempty subset S of a space V lin(S)=span(S). 

Proof. We must show that lin(S)⊆span(S) and span(S)⊆lin(S). In order to show the first 

inclusion it is enough to notice that lin(S) is a subset of every subspace of V that contains S. This 

is obvious thanks to Theorem 1.1. To prove the second inclusion we point out that lin(S) contains 

S – which is obvious and, that lin(S) is a subspace of V by Proposition 1.3. Since span(S) is 

contained in every subspace of V that contains S, span(S) is contained in lin(S).� 

 

 One of the central concepts of linear algebra is that of linear independence of sets of 

vectors. 

Definition 1.6. A finite set of vectors {v1,v2, … ,vn} from a vector space V is said to be linearly 

independent iff 

(∀a1,a2, … ,an∈F) [a1v1+a2v2+ … +anvn = Θ ⇒ a1=a2= … =an=0] 

A set of vectors that is not linearly independent is called (surprise! surprise!) linearly dependent. 

 

Notice that the linear independence is a property of sets of vectors, rather than vectors. 

Whenever we say vectors x,y,z are linearly independent what we really mean is The set {x,y,z} is 

linearly independent. 

Example 1.15. The set {(1,0,0, … ,0),(0,1,0, … 0), … ,(0,0, … ,0,1)} is a linearly independent 

subset of Fn. 

Example 1.16. {1,x,x2, … ,xn} is a linearly independent subset of Rn[x].  

 

A very important property of any linearly independent set of vectors S is that every vector 

from span(S) is uniquely represented as a linear combination of vectors from S. More precisely 

we have  

 



Theorem 1.3 A set {v1,v2, … ,vn}of vectors from V is linearly independent iff 

(∀v∈V)(∀a1,a2,…,an,b1,b2,…,bn∈F) [v=a1v1+a2v2+ … +anvn = b1v1+b2v2+ … +bnvn ⇒ (∀i) ai=bi] 

Proof. (⇒) Suppose v=a1v1+a2v2+ … +anvn  and v=b1v1+b2v2+ … +bnvn. Subtracting these 

equations side from side, we obtain Θ=(a1−b1)v1+(a2−b2)v2+ … +(an−bn)vn .Since the set {v1,v2, 

… ,vn} is linearly independent we have ai−bi=0, which means ai=bi, for each i=1,2,…,n. 

(⇐) Let us take v=Θ. One way of writing Θ as a linear combination of vectors v1,v2, … ,vn, is to 

put b1=b2= … =bn=0, i.e. Θ=0v1+0v2+ … +0vn, so our condition implies that whenever 

Θ=a1v1+a2v2+ … +anvn we have ai=0 for each i=1,2, …,n.� 

 What Theorem 1.3 really says is that if a vector can be represented as a linear combination 

of linearly independent vectors then the coefficients are unique and vice versa. 

Theorem 1.4 The set S={v1,v2, … ,vn} is linearly independent iff none of the vectors from S is a 

linear combination of the others.  

Proof. (⇒) Suppose one of the vectors is a linear combination of the others. Without loss of 

generality we may assume that vn is the one, i.e. vn=a1v1+a2v2+ … .an−1vn-1. Then we may write 

Θ=a1v1+a2v2+ … .an−1vn-1+(−1)vn. Since (−1) ≠ 0 the set {v1,v2, … ,vn} is linearly dependent. 

(⇐) Suppose now that {v1,v2, … ,vn} is linearly dependent, i.e. there exist coefficients a1,a2, … 

,an, not all of them zeroes, such that Θ=a1v1+a2v2+ … .anvn. Again, without losing generality, we 

may assume that an≠0 (we can always renumber the vectors so that the one with nonzero 

coefficient is the last). Since nonzero scalars are invertible, we have vn=(−a1an
−1)v1 + (−a2an

−1)v2 

+ … +(−an−1an
−1)vn−1� 

 

Theorem 1.5 If v∈span(v1,v2, … ,vn) then span(v1,v2, … ,vn)=span(v1,v2, … ,vn,v) 

Proof. Obviously span(v1,v2, … ,vn)⊆span(v1,v2, … ,vn,v), even if v is not a linear combination 

of v1,v2, … ,and vn. Suppose now that w∈span(v1,v2, … ,vn,v). This means that for some scalars 

p1,p2, … ,pn,p we have w=p1v1+p2v2+ …+ pnvn+pv. Since v∈span(v1,v2, … ,vn), there exist 

scalars r1,r2, … ,rn such, that v=r1v1+r2v2+ …+rnvn. Hence w=p1v1+p2v2+ …+ pnvn+p(r1v1+r2v2+ 

…+rnvn) = (p1+pr1)v1+(p2+pr2)v2+ … +(pn+prn)vn which means w∈span(v1,v2, … ,vn).� 

 

 The concepts of linear independence and spanning meet in the definition of a basis of a 

vector space. 



Definition 1.7. The set S={v1,v2, … ,vn} is a basis of a vector space V iff  

(1) span(S)=V, and  

(2) S is linearly independent. 

 

Example 1.17. The set S={(1,0,0, … ,0),(0,1,0, … 0), … ,(0,0, … ,0,1)} is a basis for Fn. This 

basis is called the standard or the canonical basis for Fn.  

Example 1.18. S={1,x,x2, … ,xn} is a basis of Rn[x]. Obviously, span({1,x,x2, … ,xn})=Rn[x] 

and in Example 1.16 we explained why S is linearly independent. 

 

Theorem 1.6 S={v1,v2, … ,vn} is a basis of a vector space V iff for every v∈V there exist unique 

scalars p1,p2, … ,pn such that v=p1v1+p2v2+ …+ pnvn. 

Proof. (⇒) Since V=span(S), all we have to show is that scalars p1,p2, … ,pn are unique, but this 

is guaranteed by Theorem 1.3. 

(⇐) Obviously span(S)=V and the linear independence of S follows from Theorem 1.3� 

 

Definition 1.8. Let S={v1,v2, … ,vn} be a basis of V and let v∈V. then the scalars p1,p2, … ,pn 

such that v=p1v1+p2v2+ …+ pnvn are called coordinates of v with respect to S. We will denote the 

sequence by [v]S = [p1,p2, … ,pn]S. 

 

Example 1.19. The standard basis S for Fn is special in that the coordinates of a vector (x1,x2, … 

,xn) are its “natural” coordinates x1,x2, … ,xn , i.e. [(x1,x2, … ,xn)]S=[x1,x2, … ,xn]S. This is 

obvious as vectors v1=(1,0,0, … ,0),v2=(0,1,0, … 0), … ,vn=(0,0, … ,0,1) constituting S are 

structured so that in every linear combination v of v1,v2, … ,vn the i-th coordinate is equal to the 

i-th coefficient. 

Example 1.20. The set S={(1,1,1),(1,1,0),(1,0,0)} is a basis for R3. It is easy to check that 

[(1,0,0)]S=[0,0,1], [(1,2,3)]S=[3,−1,−1] and [(2,3,2)]=[2,1,−1]. 

 

 According to our definition, a basis is a finite set of vectors. Not every vector space 

contains a finite basis (for example, there is no finite basis for R over Q). In this course, though, 

we will only consider those vector spaces who do posses finite bases. Such vector spaces are 

called finite dimensional. This term is justified by the following definition. 



 

Definition 1.9. Let S be a basis for a vector space V. Then |S| is called the dimension of V. We 

write dim(V)=|S|. 

A vector space can obviously have many bases, so a natural question arises, can a vector 

space have more then one dimension? Fortunately, the answer is NO, as follows from the next 

theorem. 

Theorem 1.7 In a finite dimensional vector space V every two bases have the same number of 

vectors. 

The proof of this theorem makes heavy use of the following lemma 

Lemma 1.1.  (Replacement lemma, known also as Steinitz lemma) 

Suppose the set {v1,v2, … ,vn} is linearly independent and span{w1,w2, … ,wk}=V. Then n≤k and 

some n out of the k vectors in {w1,w2, … ,wk} can be replaced be v1,v2, … ,and vn. To be more 

precise, there exist subscripts i1,i2, … ,ik−n such that the set },...,,,,...,,{ 2121 niii vvvwww
nk −

 is a 

spanning set for V. 

Proof We will prove the lemma by induction on n. For n=1 we have a linearly independent set 

{v 1} and a spanning set {w1,w2, … ,wk}. Since {v1} is linearly independent, we have v1≠Θ. This 

implies that V≠{ Θ} and every spanning set for V must be nonempty. Hence k≥n (n=1). The set 

{w 1,w2, … ,wk} spans V. This means that every vector from V, in particular v1 is a linear 

combination of w1,w2, … , and wk, so there exist scalars p1,p2, … ,pk such that v1=p1w1+p2w2+ 

…+ pkwk. At least one pi is different from 0 – otherwise v1 would be equal to Θ. Without loss of 

generality we may assume that pk≠0. This easily implies that wk is a linear combination of v1, w1, 

w2, … , and wk−1. Hence, by Theorem 1.5, span(v1,w1,w2, … ,wk−1) = span(v1,w1,w2, … ,wk) = 

span(w1,w2, … ,wk)=V and we are done. 

 Now, suppose the set {v1,v2, … ,vn+1} is linearly independent, {w1,w2, … ,wk} spans V, 

and the lemma is true for every n-element linearly independent set, in particular for {v1,v2, … 

,vn}. Hence k≥n and some n vectors from {w1,w2, … ,wk} can be replaced by v1,v2, … , and vn 

spans V. Having done this, we wind up with a single element linearly independent set {vn+1} and 

a spanning set },...,,,,...,,{ 2121 niii vvvwww
nk −

. Obviously, there exist scalars such that vn+1 = 

= nninkii vbvbvbwawawa
nk

+++++++
−− ...... 221121 21

. Moreover, at least one of the ai’s, say a1, is 



different from 0 – otherwise vn+1 would be a linear combination of v1,v2, … ,vn. Now, like in the 

first part of the proof, 
1i

w can be replace in the spanning set by vn+1.� 

Proof of Theorem 1.7. Let B={v1,v2, … ,vn} and D={w1,w2, … ,wk} be two bases of V. B, being 

a basis, is linearly independent and D, being also a basis, is a spanning set for V. Hence, by the 

replacement lemma, we have n≤k. Now, if we reverse the roles of B and D, we will get k≤n.� 

 Notice that the replacement lemma says that the size of any linearly independent subset of 

V is less than, or equal to the size of any spanning set for V. 

 The following theorem summarizes the most important properties of bases. 

Theorem 1.8 Suppose V is a vector space, dimV=n, n>0 and S⊆V. Then  

(1) If |S|=n and S is linearly independent then S is a basis for V 

(2) If |S|=n and span(S)=V then S is a basis for V 

(3) If S is linearly independent then |S|≤n 

(4) If span(S)=V then |S|≥n 

(5) If S is linearly independent then S is a subset of some basis of V 

(6) If S spans V then S contains a basis of V 

(7) S is a basis of V iff S is a maximal linearly independent subset of V 

(8) S is a basis of V iff S is a minimal spanning set for V 

Proof (1) S is linearly independent, and a basis B of V is a spanning set for V. Since |S|=n=|B|, 

the replacement lemma says that all vectors from B can be replaced by all vectors from S and the 

result (which is S) is a spanning set for V. 

(2) If S is linearly dependent then, by Theorem 1.5, S contains a proper subset S’ such that 

span(S’)=span(S)=V. But the replacement lemma says that no set containing fewer than n=|S|= 

=dim(V) vectors spans V, hence S cannot be linearly dependent. 

(3) and (4) follow immediately from the replacement lemma. 

(5) Let |S|=k. By the replacement lemma k vectors from a basis B of V can be replaced by vectors 

from S in such a way that the resulting set is a spanning set of V. Since the resulting set consists 

of n vectors, by (2) it is a basis. 

(6) There exist linearly independent subsets of S because there exist non-zero vectors in S 

(otherwise the space spanned by S would have dimension 0) and a single-element set with 

nonzero element is linearly independent. Let T be a linearly independent subset of S with the 

largest number of elements. Such a set T exists because every linearly independent subset of V 



(hence also of S) has no more than n elements. Thus S⊆span(T), hence span(S) ⊆span(span(T)). 

Since span(S)=V and span(span(T))=span(T) we get that T is a linearly independent spanning set 

for V, i.e. a basis contained in S.  

(7) If S is a basis for V then obviously S is linearly independent. Since span(S)=V, every vector v 

from V is a linear combination of vectors from S, so S∪{v} is linearly dependent. Hence S is a 

maximal linearly independent subset of V. On the other hand, if S is a maximal linearly 

independent subset of V then, for every v∈V-S, adding v to S turns it into a linearly dependent 

subset of V, which means that v∈span(S). Hence S is a basis for V. 

(8) If S is a basis then, by (4) S is a minimal spanning set for V. On the other hand suppose S is a 

minimal spanning set. Then, by Theorem 1.5, S is linearly independent, i.e. S is a basis for V.� 

Theorem 1.9 If W is a subspace of a finite dimensional space V then dimW≤dimV and 

dimW=dimV if and only if W=V. 

Proof. Any basis of W is a linearly independent subset of V, so, by(6) is a subset of a basis of V, 

hence dimW≤dimV. If dimW=dimV then, by Theorem 1.8(1), every basis for W is also a basis 

for V, so W=V as spaces spanned by the same set.� 


