Chapter 1 Linear Mappings

Definition 1.1. Let V and W be vector spaces over a field **F**. A function $\varphi: V \rightarrow W$ is called a linear mapping iff

- (a) $(\forall u, v \in V) \phi(u+v) = \phi(u) + \phi(v)$, and
- (b) $(\forall v \in V)(\forall p \in F) \phi(pv) = p\phi(v)$

<u>Proposition 1.1.</u> A function $\phi: V \rightarrow W$ is a linear mapping iff

(c) $(\forall p,q \in \mathbf{F}) (\forall u,v \in V) \phi(pu+qv) = p\phi(u)+q\phi(v)$

<u>Proof.</u> (\Rightarrow) Suppose φ is a linear mapping. Then $\varphi(pu+qv) = \varphi(pu) + \varphi(qv) = p\varphi(u) + q\varphi(v)$, by (a) and (b) in that order.

(\Leftarrow) To prove (a) we simply put p=q=1 in (c) and to prove (b) we put q=0 and u=v. Then $\varphi(pv) = = \varphi(pv+\Theta) = \varphi(pv+0v) = p\varphi(v)+\Theta\varphi(v) = p\varphi(v)+\Theta = p\varphi(v).\Box$

Example 1.1. V=W=R_n[x], $\varphi(f(x))=f'(x)$. Differentiation is obviously a linear mapping **Example 1.2.** φ : $\mathbf{R}^3 \rightarrow \mathbf{R}^4$, $\varphi(x,y,z)=(x+y,2x-z,x+y+z,y)$. We have $\varphi(x,y,z)+(a,b,c)) = \varphi(x+a,y+b,z+c) = ((x+a)+(y+b), 2(x+a)-(z+c), (x+a)+(y+b)+(z+c), (y+b)) = (x+y+a+b, z+c)$

 $2x-z+2a-c, x+y+z+a+b+c, y+b) = \varphi(x,y,z) + \varphi(a,b,c)$ and $\varphi(p(x,y,z)) = \varphi(px,py,pz) = \varphi(px,py,pz)$

 $(px+py,2px-pz,px+py+pz,py) = =(p(x+y),p(2x-z),p(x+y+z),py) = p\varphi(x,y,z)$. Hence φ is a linear mapping.

Example 1.3. φ : $\mathbb{R}^3 \to \mathbb{R}^2$, $\varphi(x,y,z) = (x+y-1,x-z)$. φ is not a linear mapping as $\varphi(\Theta + \Theta) = \varphi(\Theta) = \varphi(0,0,0) = (0+0-1,0-0) = (-1,0)$, while $\varphi(\Theta) + \varphi(\Theta) = (-1,0) + (-1,0) = (-2,0)$. This is enough to show that φ is not linear, but let us note that φ does not satisfy the second condition, too, as $\varphi(2\Theta) = \varphi(\Theta) = (-1,0)$ and $2\varphi(\Theta) = 2(-1,0) = (-2,0)$.

Example 1.4. $V=2^{\{1,2,\dots,n\}}$, the space of all subsets of $\{1,2,\dots,n\}$, over the field \mathbb{Z}_2 (see Example 2 in Chapter 4), $W=\mathbb{Z}_2$, $\varphi(A)=|A|\mod 2$. There are two cases to be considered while verifying the second condition, namely p=0 or p=1. In the case p=0 we have $\varphi(0A)=\varphi(\emptyset)=0$ and $0\varphi(A)=0(|A|\mod 2)=0$. In the second case $\varphi(1A)=\varphi(A)=|A|\mod 2=1(|A|\mod 2)=1\varphi(A)$, so the second condition holds. To verify the first condition let us consider $\varphi(A\div B)=|(A\div B)|\mod 2=1(|A\cup B)-(A\cap B)|\mod 2$. Since $A\cap B$ is a subset of $A\cup B$ we have $|(A\cup B)-(A\cap B)|=|A\cup B|-|A\cap B|$.

From the inclusion-exclusion principle we have $|A \cup B| = |A|+|B|-|A \cap B|$. Hence $\varphi(A \div B) = (|A|+|B|-2|A \cap B|) \mod 2 = (|A|+|B|) \mod 2 = (|A| \mod 2 + |B| \mod 2) \mod 2 = \varphi(A) \oplus \varphi(B)$.

We will now define two important parameters of a linear mapping, rank and nullity.

Definition 1.2. Let $\varphi: V \to W$ be a linear mapping. The <u>image</u> of φ is the set im $\varphi = \varphi(V)$ and the <u>kernel</u> of φ is the set ker $\varphi = \{v \in V: \varphi(v) = \Theta_W\}$

Proposition 1.2. imp is a subspace of W and kerp is a subspace of V.

Proof. Let $w_1, w_2 \in im\varphi$. There exist $v_1, v_2 \in V$ such that $\varphi(v_i) = w_i$, i=1,2. Then $pw_1 + qw_2 = p\varphi(v_1) + q\varphi(v_2) = \varphi(pv_1 + qv_2) \in im\varphi$, hence $im\varphi$ is a subspace of W. For every v_1 and v_2 from ker φ we have $\varphi(av_1 + bv_2) = a\varphi(v_1) + b\varphi(v_2) = a\Theta + b\Theta = \Theta$, so ker φ is a subspace of V.

<u>Definition 1.3.</u> rank(ϕ)=dim(im ϕ), nullity(ϕ)=dim(ker ϕ)

Example 1.5. Let $V=W=\mathbf{R}_n[x]$ and $\varphi(f(x))=f'(x)$. Then ker $\varphi=\mathbf{R}_0[x]$, the subspace consisting of all constant polynomials and im $\varphi=\mathbf{R}_{n-1}[x]$. Obviously, rank(φ)=n and nullity(φ)=1.

Proposition 1.3. For every set $\{v_1, v_2, \dots, v_n\} \subseteq V$, and for every linear mapping $\varphi: V \to W$, $\varphi(\text{span}(v_1, v_2, \dots, v_n)) = \text{span}(\varphi(v_1), \varphi(v_2), \dots, \varphi(v_2)).$

Proof. $w \in \varphi(\text{span}(v_1, v_2, \dots, v_n))$ iff there exist scalars a_1, a_2, \dots, a_n such that $w = \varphi(\sum_{i=1}^n a_i v_i) = \sum_{i=1}^n a_i \varphi(v_i)$. That means $w \in \varphi(\text{span}(v_1, v_2, \dots, v_n))$ iff $w \in \text{span}(\varphi(v_1), \varphi(v_2), \dots, \varphi(v_2))$.

Example 1.6. Let $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$, $\varphi(X) = AX$, where $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 3 & 5 \end{bmatrix}$ and $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$. In the traditional

notation, $\phi(x,y,z)=(x+2y+3z,2x+3y+4z,x+3y+5z)$. To find the kernel of ϕ we must solve the matrix equation AX=0, in other words we must solve the system of linear equation

 $\begin{cases} x + 2y + 3z = 0\\ 2x + 3y + 4z = 0\\ x + 3y + 5z = 0 \end{cases}$ This system is equivalent to $\begin{cases} x + 2y + 3z = 0\\ -y - 2z = 0\\ y + 2z = 0 \end{cases}$ and then to $\begin{cases} x & -z = 0\\ y & +2z = 0 \end{cases}$

which means x=z, y=-2z and z ranges over **R**. Hence every vector from ker φ has the form (z,-2z,z) = z(1,-2,1) i.e. ker φ =span((1,-2,1)) and nullity (φ) =1.

To find im φ we notice that, by Proposition 1.3 im φ =span($\varphi(1,0,0)$, $\varphi(0,1,0)$, $\varphi(0,0,1)$) = span((1,2,1),(2,3,3),(3,4,5)). If the three spanning vectors were linearly independent then rank φ would be equal to 3, but (1,2,1)=2(2,3,3)–(3,4,5) hence, by Theorem 4.5, ??? im φ = span((2,3,3), (3,4,5)). Since the last two vectors are obviously linearly independent, rank(φ)=2.

<u>**Theorem 1.1.</u>** Let $S = \{v_1, v_2, ..., v_n\}$ be a basis for V and let f be a function, mapping S into W, i.e. $f: \{v_1, v_2, ..., v_n\} \rightarrow W$. Then there exists exactly one linear mapping $\phi: V \rightarrow W$ such that for each $i=1,2, ..., n \phi(v_i)=f(v_i)$ </u>

Proof. We must prove two things, that there exists such linear mapping φ and that it is unique. To do the first, let us take any vector v from V. Since S is a basis for V, $v = \sum_{i=1}^{n} a_i v_i$ for some scalars

 $a_1, a_2, \dots a_n$. We define $\varphi(v) = \sum_{i=1}^n a_i f(v_i)$. By Theorem 4.6<?>, the scalars $a_1, a_2, \dots a_n$ are

uniquely determined by v, hence φ is a function. Is φ a linear mapping? Let us take another vector $u \in V$. There exist scalars b_1, b_2, \dots, b_n such that $u = \sum_{i=1}^n b_i v_i$. Let us take any two scalars

 $p,q \in \mathbf{F}$ and consider

$$\varphi(pu+qv) = \varphi(p(\sum_{i=1}^{n} b_i v_i) + q(\sum_{i=1}^{n} a_i v_i)) =$$

$$= \varphi(\sum_{i=1}^{n} (pb_i + qa_i)v_i) = \text{by properties of vector addition and scaling}$$

$$= \sum_{i=1}^{n} (pb_i + qa_i)f(v_i) = \text{by the definition of } \varphi$$

$$= \sum_{i=1}^{n} (pb_i f(v_i) + qa_i f(v_i)) = \text{by properties of vector addition and scaling}$$

$$= p\sum_{i=1}^{n} b_i f(v_i) + q\sum_{i=1}^{n} a_i f(v_i) = \text{by properties of vector addition and scaling}$$

= $p\phi(u)$ + $q\phi(v)$ by the definition of ϕ . Hence, by Proposition 1.1, ϕ is a linear mapping. To prove the uniqueness of ϕ let us suppose that there is another linear mapping ψ , such that

 $\psi(v_i)=f(v_i)$ for i=1,2, ..., n. Consider arbitrarily chosen vector $v = \sum_{i=1}^{n} a_i v_i$. By linearity of ψ ,

$$\Psi(\mathbf{v}) = \sum_{i=1}^{n} a_i \Psi(v_i) = \sum_{i=1}^{n} a_i f(v_i) = \phi(\mathbf{v}).$$

Theorem 1.1 says that every linear mapping from V into W is uniquely determined by its values on vectors from a basis of V, or, equivalently, that every function defined on a basis is uniquely extendable to a linear mapping.

Theorem 1.2. rank(ϕ)+nullity(ϕ)=dimV

Proof. Let $\{v_1, v_2, \dots, v_n\}$ be a basis for ker φ . Then there exist vectors w_1, w_2, \dots, w_k such that $\{v_1, v_2, \dots, v_n, w_1, w_2, \dots, w_k\}$ is a basis for V. It is enough to show that $\{\varphi(w_1), \varphi(w_1), \dots, \varphi(w_k)\}$ is a basis for im φ . By Proposition 1.3 it is enough to show that $\{\varphi(w_1), \varphi(w_1), \dots, \varphi(w_k)\}$ is linearly independent. Let $\sum_{i=1}^{k} a_i \varphi(w_i) = \Theta$. By linearity of φ we have $\Theta = \sum_{i=1}^{k} a_i \varphi(w_i) = \varphi(\sum_{i=1}^{k} a_i w_i)$, i.e. $\sum_{i=1}^{k} a_i w_i \in \ker \varphi$. Hence, for some scalars b_1, b_2, \dots, b_n we have $\sum_{i=1}^{k} a_i w_i = \sum_{j=1}^{n} b_j v_j$. This implies that $\sum_{i=1}^{k} a_i w_i + \sum_{j=1}^{n} (-b_j)v_j = \Theta$, hence all coefficients a_i and b_j are equal to 0, in particular all a_i -s are zeroes.

<u>Theorem 1.3.</u> A linear mapping $\phi: V \rightarrow W$ is one-to-one iff ϕ preserves linear independence, i.e. for every linearly independent subset S of V, $\phi(S)$ is a linearly independent subset of W.

Proof. (\Rightarrow) Suppose S={ $v_1, v_2, ..., v_n$ } is a linearly independent subset of V and $\sum_{i=1}^n a_i \varphi(v_i) = \Theta_W$. We must prove that $a_1 = ... = a_n = 0$. Since φ is a linear mapping we have $\sum_{i=1}^n a_i \varphi(v_i) = \varphi(\sum_{i=1}^n a_i v_i)$

= Θ . Since $\varphi(\Theta_V) = \Theta_W$ and φ is a 1-1 function we have $\sum_{i=1}^n a_i v_i = \Theta_V$ and, by linear independence of S, we have $a_1 = \dots = a_n = 0$.

(\Leftarrow) Suppose S={v₁,v₂, ...,v_n} is a basis of V and for some v and u from V, $v = \sum_{i=1}^{n} a_i v_i$ and

$$u = \sum_{i=1}^{n} b_i v_i, \text{ and } \varphi(v) = \varphi(u). \text{ Then } \Theta_W = \varphi(v) - \varphi(u) = \varphi(v-u) = \sum_{i=1}^{n} (a_i - b_i)\varphi(v_i). \text{ Since } \varphi(v) - \varphi(u) = \varphi(v-u) = \sum_{i=1}^{n} (a_i - b_i)\varphi(v_i).$$

preserves linear independence we obtain that $a_i=b_i$ for i=1,2, ...,n and that means that $u=v.\square$ **Theorem 1.4.** A linear mapping $\phi:V \rightarrow W$ is one-to-one iff ker $\phi=\{\emptyset\}$

Proof. (\Rightarrow) From Theorem 1.3 and Proposition 1.3 it follows that for every basis { v_1, v_2, \dots, v_n } of V { $\phi(v_1), \phi(v_2), \dots, \phi(v_n)$ } is a basis for im ϕ , hence dim(ker ϕ)=n-dim(im ϕ)=0 and that means that ker ϕ ={ \emptyset }.

(⇐) If ker $\phi \neq \{\emptyset\}$ then there exists $v \neq 0$ such that $\phi(v)=0$. Since $\phi(0)=0$, ϕ is not one-to-one.