Chapter 1
Linear Mappings

Definition 1.1. Let V and W be vector spaces over a fieldA function¢:V - W is called a
linear mappindff

(@  @unvdV) outv)=¢(u)+¢(v), and

(b)  (@vOV)(UpUF) ¢(pv)=pd(v)

Proposition 1.1. A function$:V - W is a linear mapping iff
(©)  (Ep,adF) (HuviV) ¢(putqv) = (u)+op(v)

Proof. (=) Supposeé is a linear mapping. Thep(pu+qv) =¢(pu)+d(qv) = ph(u) + gh(v), by
(a) and (b) in that order.

(O) To prove (a) we simply put p=g=1 in (c) and toye (b) we put g=0 and u=v. Thé(pv) =
=¢(pv+O) = ¢(pv+0v) = pp(v)+0d(v) = pp(v)+© = ph(v)."]

Example 1.1. V=W=R,[x], ¢(f(x))=f '(x). Differentiation is obviously a lingamapping
Example 1.2. $:R3= R?, d(x,y,2)=(x+y, 2%z, x+y+z,y). We have(x,y,z)+(a,b,c)) =
o(x+a,y+b,z+c) = ((x+a)+(y+b), 2(x+afz+c), (x+a)+(y+b)+(z+c), (y+b)) = (x+y+a+b,
2x-z+2arc, xtyt+ztath+c, y+b) H(x,y.z) +¢(a,b,c) andb(p(x.y,2))=¢(px.py.pz) =
(Px+py,2px-pz,pX+py+pz,py) = =(p(X+y),p(2x2),p(x+y+2z),py) = B(X,y,z). Hencep is a linear
mapping.

Example 1.3. $:R®*- R?, §(x,y,z)=(x+y-1,x-z). ¢ is not a linear mapping #§0+0) = ¢(O) =
¢(0,0,0)= (0+6-1,0-0) = (-1,0), while¢(©)+¢(©)=(-1,0)+(-1,0) = £2,0). This is enough to
show that is not linear, but let us note thfatdoes not satisfy the second condition, too, as
$(20)=¢(©)=(-1,0) and 3(©)=2(-1,0)=(-2,0).

Example 1.4. V=212--" the space of all subsets of {1,2, ... ,n}, overfiktl Z, (see Example
2 in Chapter 4), WZ,, $(A)=|]A|mod2. There are two cases to be considetattwerifying the
second condition, namely p=0 or p=1. In the casewe haved(0A)= ¢([1)=0 and
0¢(A)=0(JAJmod2)=0. In the second casd A)= ¢(A) = |[A|mod2 = 1(JAJmod2)=i(A), so the
second condition holds. To verify the first conalitiet us considep(A+B) = |(A+B)|mod2 =
|[(ADB)—-(AnB)|Jmod2. Since AB is a subset of AB we have |(AIB)—(AnB|=|AOBJ|-|AnB|.



From the inclusion-exclusion principle we havél| = |A|+|Bt|AnB|. Hencep(A+B) =
(JA]+|BF2]AnB|)mod2 = (JA]+|B|)mod2 = (JA|mod2 + |Bjmod2)mod(A) Od(B).

We will now define two important parameters ofreear mappingrank andnullity.

Definition 1.2. Let ¢:V - W be a linear mapping. The image¢ is the set inh = ¢(V) and the
kernelof ¢ is the set kdr={v[IV: ¢(v)=Ow}

Proposition 1.2. im¢ is a subspace of W and bes a subspace of V.

Proof. Let wy,w,l]im@. There exist ¥Vv.[1V such thatp(vi)=w;, i=1,2. Then pw+qw, = pp(v1)+
ao(v2) = d(pvatqve)limd, hence inp is a subspace of W. For everyand v from kep we have
d(avitbvy) = ap(v1)+bd(v2) = &O+b@ = O, so ked is a subspace of V.

Definition 1.3. rank@)=dim(imé), nullity(¢)=dim(kerp)
Example 1.5. Let V=W=R[x] and ¢(f(x))=f '(x). Then kep=Rq[X], the subspace consisting of

all constant polynomials and émR,-1[x]. Obviously, ranké)=n and nullity$)=1.

Proposition 1.3. For every set {y,v,, ... ,\o} IV, and for every linear mappingV - W,

d(span(y,vz, ... ,Wn))=spanp(vi).o(va), ... , ¢(v2)).

Proof. wh¢(span(y,Vz, ... ,W)) iff there exist scalars @, ... a such that wzé(z av,) =

i=1

Zn:ai;é(vi) . That means W (span(\,Vva, ... ,Vn)) iff wlspan(vi),p(v2), ... , $(v2)).[]

i=1
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Example 1.6. Let $:R*~ R® ¢(X) = AX, where A=|2 3 4|and X =| y|. In the traditional
1 35 Z

notation,b(X,y,z)=(x+2y+3z,2x+3y+4z,x+3y+5z). To find the ket of¢ we must solve the
matrix equation AX®, in other words we must solve the system of liregpration
X+2y+3z=0 X+2y+3z=0 0
. . . X -z =
2x+3y+4z=0 This system is equivalentto —-y-2z=0 and then ta[ ‘2 :
Z =
Xx+3y+5z=0 y+2z=0 y



which means x=z, y=2z and z ranges ov&. Hence every vector from kehas the form
(z,2z,2z) = 2(172,1) i.e. ked=span((1;2,1)) and nullityd)=1.

To find im$ we notice that, by Proposition 1.3¢mspan(1,0,0),4¢(0,1,0),$(0,0,1)) =
span((1,2,1),(2,3,3),(3,4,5)). If the three spagniactors were linearly independent then gank
would be equal to 3, but (1,2,1)=2(2,3:3,4,5) hence, by Theorem 4.5, ??® imspan((2,3,3),
(3,4,5)). Since the last two vectors are obviolialarly independent, rangj=2.

Theorem 1.1. Let S={v1,v,, ... ,wi} be a basis for V and let f be a function, mappBto
W, i.e. f{vy,v,,...,vn} - W. Then there exists exactly one linear mapging- W such that
for each i=1,2, ... ;i (vi)=f(vi)

Proof. We must prove two things, that there exists simgal mapping and that it is unique. To

do the first,. let us take any vector v from V. &irS is a basis for W, = Zai v, for some scalars
i=1

a,&, ... & We defineg(v) :Zai f(v,). By Theorem 4.6<?>, the scalaisag ... & are

i=1
uniquely determined by v, hengas a function. Igh a linear mapping? Let us take another
vector WV. There exist scalars fm, ... .k, such thatu = Zbi v,. Let us take any two scalars

i=1

p,oC]F and consider

d(pu+an) =4(P(Y DY) + A av)) =

= ¢(Z(pbi +0a,)v,) = by properties of vector addition and scaling
i=1
=Y (pb +0a)f(v) = by the definition of
i=1
= Z(pbi f(v,)+aa f(v,)) = by properties of vector addition and scaling
i=1

prI f(v)+ an,. f(v) = by properties of vector addition and scaling
i=1 i=1



= pp(u)+ ab(v) by the definition ofp. Hence, by Proposition 1.4,is a linear mapping. To

prove the uniqueness ¢flet us suppose that there is another linear mapjpiisuch that

Y(vi)=f(v;) for i=1,2, ... ,n. Consider arbitrarily chosen \act = Zaivi . By linearity ofy,

W= Y as) =3 a1 ()= ().

Theorem 1.1 says that every linear mapping fromt® W is uniquely determined by its
values on vectors from a basis of V, or, equivl§etitat every function defined on a basis is

uniquely extendable to a linear mapping.

Theorem 1.2. rank()+nullity(¢)=dimV
Proof. Let {vi,Vvo, ... ,\h} be a basis for kdr. Then there exist vectors w,, ... ,wk such that
{Vi,Vvo, ... Vho,W1,Wo, ... W} iS a basis for V. It is enough to show that({v1), d(w1), ... , d(wi)}
is a basis for if. By Proposition 1.3 it is enough to show thé{wW:), ¢(wy), ... ,d(wy)} is

Kk Kk
linearly independent. Le}_ a,#(w;) = ©. By linearity of¢ we haved = > a g(w;) =

i=1 i=1

k k [ n
(> aw),ie > aw Okerg. Hence, for some scalargt, ... ,b, we haved aw => b.v;.
i=1 i=1 i=1 j:1

k n
This implies that) aw, + > (-b;)v; =©, hence all coefficients and hare equal to 0, in
=1

i=1

particular all as are zeroes.

Theorem 1.3. A linear mappingp:V - W is one-to-one iffy preserves linear independence, i.e.

for every linearly independent subset S ofh)\5) is a linearly independent subset of W.

Proof. (=) Suppose S={yVs, ... ,\\} is a linearly independent subset of V a@aiqﬁ(vi ) =Ow.

i=1

We must prove thata ... =a=0. Since} is a linear mapping we hav® a ¢(v;) = #(D_a,v;)

i=1 i=1

= 0. Sincedp(Oy)=Ow and¢ is a 1-1 function we havE a,v, =0y and, by linear independence

i=1

of S, we have@& ... =3,=0.



(O) Suppose S={uVy, ... ,\n} is a basis of V and for some v and u fromws Zaivi and
i=1

u=3 by, andp(1)=4(u). ThenBu = ¢(v)-0(u) =6(v-1) = 3" (& ~b)4(%) . Sinced

preserves linear independence we obtain tkét for i=1,2, ...,n and that means that u=v.
Theorem 1.4. A linear mappingp:V - W is one-to-one iff key={ 1}

Proof. (=) From Theorem 1.3 and Proposition 1.3 it followattfor every basis {yw, ... ,Vn}

of V{¢(v),d(v2), ... d(vn)}is a basis for inp, hence dim(kel)=n—-dim(im¢)=0 and that means
that kep={0}.

(O) If kerpz{ 0} then there exists#0 such thath(v)=0. Sinced(0)=0, ¢ is not one-to-one.



