
 Chapter 1

Matrices 

Definition 1.1. An nk matrix over a field F is a function A:{1,2,…,n}{1,2,…k}F. 

 

 A matrix is usually represented by (and identified with) an nk (read as “n by k”) 

array of elements of the field (usually numbers). The horizontal lines of a matrix are referred 

to as rows and the vertical ones as columns. The individual elements are called entries of the 

matrix. Thus an nk matrix has n rows, k columns and nk entries. Matrices will be denoted by 

capital letters and their entries by the corresponding small letters. Thus, in case of a matrix A 

we will write A(i,j)=ai,j and will refer to ai,j as the element of the i-th row and j-th column of 

A. On the other hand we will use the symbol [ai,j] to denote the matrix A with entries ai,j. 

Rows and columns of a matrix can (and will) be considered vectors from F
k
 and F

n
, 

respectively, and will be denoted by r1,r2, … rn and c1,c2, … ,ck. The expression nk is called 

the size of a matrix. 

 

Definition 1.2. Let A be an nk matrix. Then the transpose of A is the kn matrix A
T
, such 

that for each i and j, A
T
(i,j)=A(j,i). 

In other words, A
T
 is what we get when we replace rows of A with columns and vice 

versa.. 

 

Proposition 1.1. For any n,kN the set Mtr(n,k) consisting of all nk matrices over F with 

ordinary function addition and multiplication of functions by constants is a vector space over 

F, dim(Mtr(n,k))=nk. 

Proof. Mtr(n,k) is a vector space (see Example 4.4???). As a basis for Mtr(n,k) we can use the 

set consisting of matrices Ap,q, where 
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 The operation of matrix multiplication is something quite different from the 

abovementioned operations of matrix scaling and addition. It is not inherited from function 

theory, it is a specifically matrix operation. The reason for this will soon become clear. 

 



Definition 1.3. Suppose A is an nk matrix and B is a ks matrix. Then the product of A by B 

is the matrix C, where ci,j=ai,1b1,j+ai,2b2,j+ … ai,kbk,j=
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In other words, ci,j is the sum of the products of consecutive elements of the i-th row of 

A by the corresponding elements of the j-th column of B. Strictly speaking multiplication of 

matrices in general is not an operation on matrices as it maps Mtr(n,k)Mtr(k,s) into Mtr(n,s). 

It is an operation though, when n=k=s. Matrices with the same number of rows and column 

are called square matrices. 

 Notice that C=AB is an ns matrix. Notice also that for the definition to work, the 

number of columns in A (the first factor) must equal the number of rows in B (the second 

factor). In other cases the product is not defined. This suggest that matrix multiplication need 

not be commutative. 
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 and BA is not defined since the 

number of columns of B is not equal to the number of rows of A 
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example proves that AB may differ from BA even when both products exist and have the 

same size. 

Example 1.3. The nn matrix I defined as 
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matrix multiplication on Mtr(n,n). Indeed, for every matrix A, AI(i,j) = 
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A(i,j) because ),(),( jtItiA  is equal to A(i,j) when t=j and is equal to 0 otherwise. Hence 

AI=A. A similar argument proves that IA=A. All entries of the identity matrix I are equal to 0 

except for the diagonal entries which are all equal to 1. The term diagonal entries of a matrix 

A refers to the diagonal of a square nn matrix, i.e. the line connecting the top-left with the 



bottom-right corner of the matrix. The line consists of all elements of the form A(i,i), i=1,2, 

… , n. 

 

Theorem 1.1.  For every nk matrix A and for every two ks matrices B and C, 

A(B+C)=AB+AC, i.e. matrix multiplication is distributive with respect to matrix addition. 

Proof. A(B+C)[i,j] = 
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Definition 1.4. Let A be an nk matrix. We say that A is a row echelon matrix iff  

(a) if ri is a nonzero row of A then ri-1 is also a nonzero row, i=2,3,… 

(b) if ai,j is the first nonzero entry in ri and ai-1,p is the first nonzero entry in ri-1 then p<j 

If, in addition,  

(c) the first nonzero entry in each nonzero row is equal to 1 

(d) the first nonzero entry in each nonzero row is the only nonzero entry in its column 

then A is called a row canonical matrix. 

 

Definition 1.5. The following transformations of a matrix are called elementary row 

operations 

(a) ji rr    - replacing row ri with rj and vice versa (row swapping) 

(b) ii crr    - replacing row ri with its multiple by a nonzero constant c (scaling of a row). 

In practice we abbreviate the symbol to cri 

(c) jii rrr    - replacing row ri with the sum of ri and rj (adding of rj to ri). We usually 

write simply ri+rj. 

(d) jii crrr   - replacing row ri with the sum of ri and a multiple of rj by a constant c. 

Normally we just write ri+crj.  

 

Notice that the operation (d) is a composition of (b) and (c). Namely, we can do crj, 

then ri+rj (here rj denotes the “new” row j, after scaling) and finally c
-1

rj to return to the 

original row j. 

 



Definition 1.6. Matrices A and B are said to be row-equivalent iff A can be transformed into 

B by a sequence of elementary row operations. We denote row-equivalence by A~B. 

 

Definition 1.7. The row rank of a matrix A, r(A), is the dimension of the subspace of F
k
 

spanned by rows of A. 

 

Theorem 1.2. For every two matrices A and B, if A~B then r(A)=r(B). 

Proof. We prove this by showing that each elementary row operation preserves the very space 

spanned by rows of the matrix, hence they also preserve its dimension.  

 

Theorem 1.3. For every matrix A, r(A) = r(A
T
). 

Proof. Skipped 

 

Definitions 1.4 – 1.7 and Theorem 1.2 could just as well be phrased in terms of 

columns rather than rows, leading to the concept of the column rank of a matrix. However, 

Theorem 1.3 states that the two are the same.  

Since the rank of any row echelon matrix is clearly the number of its nonzero rows, 

Theorem 1.2. provides a strategy for calculating the rank of a matrix - row reduce the matrix 

to a row echelon matrix and then count the nonzero rows. 

 

Definition 1.8. The determinant is a function which assigns a number (an element of the 

underlying field) to every square (i.e. nn) matrix A. The function is defined inductively with 

respect to n: 

(1) if n=1 then det(A)=A[1,1] 

(2) if n>1 then det(A)=
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1 )det(]1,[)1(  , where Ap,s is the n-1n-1 matrix obtained 

from A by the removal of p-th row and s-th column. 

 

The sum appearing in part two of the definition is known as the Laplace expansion of the 

determinant with respect to the first column. 


