
 Chapter 1

Matrices 

Definition 1.1. An nk matrix over a field F is a function A:{1,2,…,n}{1,2,…k}F. 

 

 A matrix is usually represented by (and identified with) an nk (read as “n by k”) 

array of elements of the field (usually numbers). The horizontal lines of a matrix are referred 

to as rows and the vertical ones as columns. The individual elements are called entries of the 

matrix. Thus an nk matrix has n rows, k columns and nk entries. Matrices will be denoted by 

capital letters and their entries by the corresponding small letters. Thus, in case of a matrix A 

we will write A(i,j)=ai,j and will refer to ai,j as the element of the i-th row and j-th column of 

A. On the other hand we will use the symbol [ai,j] to denote the matrix A with entries ai,j. 

Rows and columns of a matrix can (and will) be considered vectors from F
k
 and F

n
, 

respectively, and will be denoted by r1,r2, … rn and c1,c2, … ,ck. The expression nk is called 

the size of a matrix. 

 

Definition 1.2. Let A be an nk matrix. Then the transpose of A is the kn matrix A
T
, such 

that for each i and j, A
T
(i,j)=A(j,i). 

In other words, A
T
 is what we get when we replace rows of A with columns and vice 

versa.. 

 

Proposition 1.1. For any n,kN the set Mtr(n,k) consisting of all nk matrices over F with 

ordinary function addition and multiplication of functions by constants is a vector space over 

F, dim(Mtr(n,k))=nk. 

Proof. Mtr(n,k) is a vector space (see Example 4.4???). As a basis for Mtr(n,k) we can use the 

set consisting of matrices Ap,q, where 


 


otherwise

qpjiif
jiA qp

0

),(),(1
),(.   

 

 The operation of matrix multiplication is something quite different from the 

abovementioned operations of matrix scaling and addition. It is not inherited from function 

theory, it is a specifically matrix operation. The reason for this will soon become clear. 

 



Definition 1.3. Suppose A is an nk matrix and B is a ks matrix. Then the product of A by B 

is the matrix C, where ci,j=ai,1b1,j+ai,2b2,j+ … ai,kbk,j=


k

t

jtti ba
1

,,  

 

In other words, ci,j is the sum of the products of consecutive elements of the i-th row of 

A by the corresponding elements of the j-th column of B. Strictly speaking multiplication of 

matrices in general is not an operation on matrices as it maps Mtr(n,k)Mtr(k,s) into Mtr(n,s). 

It is an operation though, when n=k=s. Matrices with the same number of rows and column 

are called square matrices. 

 Notice that C=AB is an ns matrix. Notice also that for the definition to work, the 

number of columns in A (the first factor) must equal the number of rows in B (the second 

factor). In other cases the product is not defined. This suggest that matrix multiplication need 

not be commutative. 

 

Example 1.1. Let 
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B . then 
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 and BA is not defined since the 

number of columns of B is not equal to the number of rows of A 

Example 1.2. Let 
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B . Then 
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AB  while 
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BA . This 

example proves that AB may differ from BA even when both products exist and have the 

same size. 

Example 1.3. The nn matrix I defined as 
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),(  is the identity element for 

matrix multiplication on Mtr(n,n). Indeed, for every matrix A, AI(i,j) = 
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),(),(  = 

A(i,j) because ),(),( jtItiA  is equal to A(i,j) when t=j and is equal to 0 otherwise. Hence 

AI=A. A similar argument proves that IA=A. All entries of the identity matrix I are equal to 0 

except for the diagonal entries which are all equal to 1. The term diagonal entries of a matrix 

A refers to the diagonal of a square nn matrix, i.e. the line connecting the top-left with the 



bottom-right corner of the matrix. The line consists of all elements of the form A(i,i), i=1,2, 

… , n. 

 

Theorem 1.1.  For every nk matrix A and for every two ks matrices B and C, 

A(B+C)=AB+AC, i.e. matrix multiplication is distributive with respect to matrix addition. 

Proof. A(B+C)[i,j] = 



k

p

jpCBpiA
1

],)[](,[  = )],[],[](,[
1





k

p

jpCjpBpiA   = 

)],[],[],[],[
1 1

 
 


k

p

k

p

jpCpiAjpBpiA  = (AB+AC)[i,j]. 

 

Definition 1.4. Let A be an nk matrix. We say that A is a row echelon matrix iff  

(a) if ri is a nonzero row of A then ri-1 is also a nonzero row, i=2,3,… 

(b) if ai,j is the first nonzero entry in ri and ai-1,p is the first nonzero entry in ri-1 then p<j 

If, in addition,  

(c) the first nonzero entry in each nonzero row is equal to 1 

(d) the first nonzero entry in each nonzero row is the only nonzero entry in its column 

then A is called a row canonical matrix. 

 

Definition 1.5. The following transformations of a matrix are called elementary row 

operations 

(a) ji rr    - replacing row ri with rj and vice versa (row swapping) 

(b) ii crr    - replacing row ri with its multiple by a nonzero constant c (scaling of a row). 

In practice we abbreviate the symbol to cri 

(c) jii rrr    - replacing row ri with the sum of ri and rj (adding of rj to ri). We usually 

write simply ri+rj. 

(d) jii crrr   - replacing row ri with the sum of ri and a multiple of rj by a constant c. 

Normally we just write ri+crj.  

 

Notice that the operation (d) is a composition of (b) and (c). Namely, we can do crj, 

then ri+rj (here rj denotes the “new” row j, after scaling) and finally c
-1

rj to return to the 

original row j. 

 



Definition 1.6. Matrices A and B are said to be row-equivalent iff A can be transformed into 

B by a sequence of elementary row operations. We denote row-equivalence by A~B. 

 

Definition 1.7. The row rank of a matrix A, r(A), is the dimension of the subspace of F
k
 

spanned by rows of A. 

 

Theorem 1.2. For every two matrices A and B, if A~B then r(A)=r(B). 

Proof. We prove this by showing that each elementary row operation preserves the very space 

spanned by rows of the matrix, hence they also preserve its dimension.  

 

Theorem 1.3. For every matrix A, r(A) = r(A
T
). 

Proof. Skipped 

 

Definitions 1.4 – 1.7 and Theorem 1.2 could just as well be phrased in terms of 

columns rather than rows, leading to the concept of the column rank of a matrix. However, 

Theorem 1.3 states that the two are the same.  

Since the rank of any row echelon matrix is clearly the number of its nonzero rows, 

Theorem 1.2. provides a strategy for calculating the rank of a matrix - row reduce the matrix 

to a row echelon matrix and then count the nonzero rows. 

 

Definition 1.8. The determinant is a function which assigns a number (an element of the 

underlying field) to every square (i.e. nn) matrix A. The function is defined inductively with 

respect to n: 

(1) if n=1 then det(A)=A[1,1] 

(2) if n>1 then det(A)=
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1 )det(]1,[)1(  , where Ap,s is the n-1n-1 matrix obtained 

from A by the removal of p-th row and s-th column. 

 

The sum appearing in part two of the definition is known as the Laplace expansion of the 

determinant with respect to the first column. 


