
Matrices and Linear Mappings 

Suppose A is an nk matrix over F and X=[x1,x2, … ,xk] is a single-row matrix 

representing a vector from Fk. By the definition of the matrix multiplication, AXT is a single-

column matrix representing a vector from Fn. Hence if we fix A and let X vary over Fk we 

have a function A: Fk → Fn defined as A(X)=AXT. 

 

Theorem 1.1. For every nk matrix A the function A(X)=AXT is a linear mapping of Fk into 

Fn
. 

Proof. The i-th component of the vector A(pX) is ai,1px1+ai,2px2+ … +ai,kpxk = 

p(ai,1x1+ai,2x2+ … +ai,kxk). Since ai,1x1+ai,2x2+ … +ai,kxk is the i-th component of A(X), we 

have proved that A preserves scaling. Suppose Y=[y1,y2, … ,yk] and consider A(X+Y) = 

A((X+Y)T) = A[x1+y1, x2+y2, … , xk+yk]
T. By the definition of the matrix product, the i-th 

component of A(X+Y) is equal to ai,1(x1+y1)+ai,2(x2+y2) … +ai,k(xk+yk) = ai,1x1+ai,2x2+ … 

+ai,kxk + ai,1y1+ai,2y2+ … +ai,kyk and this is the i-th component of A(X)+ A(Y). This shows 

that A preserves addition. 

 

 In case of coordinate vectors we will often leave out the transposition symbol T 

allowing the context to decide whether the sequence of scalars should be written horizontally 

or vertically. 

 

Corollary. For every nk matrix A and for every two ks matrices B and C, 

A(B+C)=AB+AC, i.e. matrix multiplication is distributive with respect to matrix addition. 

Proof. From the definition of matrix multiplication the i-th column of A(B+C) is the product 

of A and the i-th column of B+C. Since the i-th column of B+C is the sum of the i-th columns 

of B and C, by Theorem 1.1 we have that the i-th column of A(B+C) is equal to the i-th 

column of AB+AC. 

 

 Theorem 1.1 says that with every nk matrix we can associate a linear mapping from 

Fk into Fn. The following definition shows how to assign a matrix to a linear mapping. 

 

Definition 1.2. Let us consider a linear mapping :Fk→Fn and let us choose bases R={v1,v2, 

… ,vk} for Fk and S={w1,w2, … ,wn} for Fn. For each vector viR there exist unique scalars 



a1,i, a2,i, … , an,i  such that (vi)=a1,iw1+a2,iw2 + … + an,iwn. The kn matrix )(R

SM  = [ai,j] is 

called the matrix of  in bases R to S. 

 

Remark 1. In other words, for each i, the i-th column of the matrix )(R

SM is equal to 

[(vi)]S.  

Remark 2. The matrix assigned to a linear mapping depends on the choice of the bases R and 

S but the size of the matrix depends only on the dimension of the domain and the range of , 

namely the number of columns is equal to the dimension of the domain and the number of 

rows to the dimension of the range of . If we choose another pair of bases we will obtain 

another matrix for the same linear mapping. Also, two different linear mappings may have the 

same matrix but with respect to two pairs of bases.  

 

Example 1.2. Let :R3→R2, (x,y,z) = (x+2y−2z,3x−y+2z). We will construct the matrix for 

 in bases R={(0,1,1),(1,0,1),(1,1,0)} and S={(1,1),(1,0)}. We calculate the values of  on 

vectors from R and represent them as linear combinations of vectors from S.  

(0,1,1) = (0,1) =1(1,1)+(−1)(1,0),  

(1,0,1) = (−1,5) = 5(1,1)+(−6)(1,0) and 

 (1,1,0) = (3,2) = 2(1,1)+1(1,0).  

Finally we form the matrix placing the coefficients of the linear combinations in consecutive 

columns 𝑀𝑆
𝑅(𝜑) = [

1 5 2
−1 −6 1

]. 

 

 Recall that [v]R denotes the coordinate vector of v with respect to a basis R. The 

following theorem, states that matrices and linear mappings are essentially the same thing, or 

rather, there is a 1-1 correspondence between matrices and linear mappings. 

 

Theorem 1.2. Given a linear mapping :Fk→Fn and bases S={v1,v2, … ,vk} for Fk, and 

R={w1,w2, … ,wn} for Fn, for every vector x from Fk and for every kn matrix A we have 
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() Now suppose that for every x from Fk, RS xxA )]([][ = . Let us put x=vi. Then [𝑣𝑖]𝑆  = [0, 

… ,1, … ,0]. The only 1 in the sequence is in the i-th place. Hence 𝐴[𝑣𝑖]𝑆 is equal to the i-th 

column of A. By the first remark following Definition 1.2 we are done. 

 

Theorem 1.3. If :Fk→Fn and :Fn→Fp are linear mappings, and S,R,T are bases for 

Fk,Fn,Fp, respectively, then )()()(  S

R
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Proof. This is an immediate consequence of Theorem 1.2. 

 

Theorem 1.4. Matrix multiplication is associative, i.e. for every three matrices A,B and C for 

whom the products exist A(BC) = (AB)C. 

Proof. It follows immediately from Theorem 1.3 and the fact that function composition is 

associative. 

 

Theorem 1.5. For every two bases R and S of 𝑭𝑛 and for every linear operator  on 𝑭𝑛 (a 

linear operator is a linear mapping which maps a vector space into itself) we have  

𝑀𝑅
𝑅(𝜑) =  𝑀𝑅

𝑆(𝑖𝑑)𝑀𝑆
𝑆(𝜑)𝑀𝑆

𝑅(𝑖𝑑). 

Proof.  Applying twice Theorem 1.3 to 𝑀𝑅
𝑆(𝑖𝑑)𝑀𝑆

𝑆(𝜑)𝑀𝑆
𝑅(𝑖𝑑)  we get 𝑀𝑅

𝑅((𝑖𝑑°𝜑)°𝑖𝑑) which 

is the same as 𝑀𝑅
𝑅(𝜑).  


