
Chapter 9 
Jordan Block Matrices 

 

In this chapter we will solve the following problem. Given a linear operator T find a 

basis R of Fn such that the matrix MR(T) is as simple as possible. Of course “simple” is a 

matter of taste. Here we consider a matrix simple if it is as close as possible to diagonal. 

Unfortunately, not every matrix is similar to a diagonal one. We will introduce and study the 

next best thing, the Jordan block matrix. But first we investigate the optimistic case: there 

exists a basis R such that A= )(TM R  is a diagonal matrix, i.e. aij=0 if i≠j. What is so special 

about this basis? Let us denote vectors of  R by v1,v2, ... vn. Then, for each i we have T(vi) = 

aiivi. 

 

Definition 9.1. A scalar λ is called an eigenvalue of T iff there exists a nonzero vector v such 

that T(v)= λv. Every such vector is called an eigenvector of T belonging to λ. 

 

Theorem 1.1. The matrix )(TM R  is diagonal iff R is a basis consisting entirely of 

eigenvectors of T.� 

 

It seems that eigenvalues and eigenvectors have an important part to play in this 

theory. How do we find eigenvalues and eigenvectors for an operator? We simply follow the 

definition, except that we use the matrix of T in a basis R of our choice, in place of T itself. 

For example if R is the standard basis for Fn and A is the matrix of T in R then T(x)=Ax. The 

equation T(x)= λx is then equivalent to Ax=λx=λIx. This yields (A-λI)x=ΘΘΘΘ. Thus λ is an 

eigenvalue for T (or for A) iff the homogeneous system of equations (A-λI)x=ΘΘΘΘ has a 

nonzero solution (beside the zero solution, which is always there). Every such solution is then 

an eigenvector of T belonging to the eigenvalue λ. Since solutions of a homogeneous system 

of linear equations form a vector space we get that all eigenvectors belonging to a particular 

eigenvalue (together with the zero vector, which is not an eigenvector itself) form a subspace 

of Fn, called an eigenspace. Nonzero solutions exist if and only if the rank of A is less than n - 

the number of columns of A. This happens if and only if det(A-λI)=0. It is easy to see that the 

function det(A-λI) is a polynomial of degree n in variable λ. It is called the characteristic 

polynomial of the operator T (and of the matrix A). Hence we have proved 



 

Theorem 9.1.  A scalar t is an eigenvalue for A iff t is a root of the characteristic polynomial 

of A.� 

 

Theorem 9.2. If λ1,λ2, ... ,λn are pairwise different eigenvalues for T and for each i, Li 

={v i,1,vi,2, ... ,vi,k(i)} is a linearly independent set of eigenvectors belonging to λi then L1∪L2∪ 

... Ln is linearly independent. 

Roughly speaking, the theorem states that eigenvectors belonging to different 

eigenvalues are linearly independent. 

Proof. First, suppose that every Li is a one-element set. For simplicity we will write Li={v i}. 

We prove our case by induction. For n=1 there is nothing to prove. Suppose the theorem holds 

for some n and consider the condition ∑
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λi-λn+1=0. By the induction hypothesis, this implies (λi-λn+1)ai=0 for i=1,2, ... ,n. Since the 

eigenvalues are assumed to be pairwise different, we get a1=a2= ... =an=0. This and 
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To conclude the proof suppose that |Li|=k(i) and ∑∑
= =

Θ=
n

i

ik

j
jiji va

1

)(

1
,, . For each i denote 

∑
=

=
)(

1
,,

ik

j
jijii vaw . Each vector wi, being a linear combination of eigenvectors belonging to the 

same eigenvalue λi is either equal to Θ or is itself an eigenvector belonging to λi  If some of 

them, say wi(1),wi(2), ... wi(p) are in fact eigenvectors then ∑ ∑∑∑
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linear combination of eigenvectors belonging to different eigenvalues. Hence, by the first part 

of the proof, all coefficients of the linear combination Θ=∑
=
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1
)( are zeroes, while everybody 

can clearly see that they are ones. This is impossible since in every field 1≠0. Hence all wi=Θ. 

Since each set Li is linearly independent, all ai,j are equal to 0.� 



 

Example 9.1. Find a diagonal matrix for T(x,y,z) = (3x+y-z,2x+4y-2z,x+y+z). 

The matrix A of T with respect to the standard basis of R3 is 
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. The characteristic 

polynomial of A is ∆A(λ) = -λ3+8λ2-20λ+16 = (2-λ)2(4-λ). For λ=2 we get A-λI = A-2I = 

=
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. The rank of A-2I is obviously 1 and we can easily find a basis for the solution 

space, namely {(1,-1,0), (0,1,1)}. For λ=4 we get A-λI = A-4I =
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. The rank of 

A-4I is 2 and we can chose (1,2,1) as an eigenvector belonging to 4. The set R = {(1,-1,0), 

(0,1,1),(1,2,1)} is a basis for R3 and MR(T) = 
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Unfortunately, not every matrix can be diagonalized. For some matrices (operators) there is 

no basis consisting of eigenvectors. In those cases the next best thing is the Jordan block 

matrix.  

Definition 9.2. A block matrix is a matrix of the form  
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 where each Bi is a square matrix, the diagonal of Bi is a part of the 

diagonal of A and all entries outside blocks Bi are zeroes. 

Definition 9.3. A Jordan block of size k and with diagonal entry λ is the k×k matrix 

B=
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Definition 9.4. A Jordan block matrix is a matrix of the form  
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 where each Bi is a Jordan block. 

Example 9.2. 
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J   is a Jordan block matrix with three Jordan blocks. 

One of size 1 with diagonal entry 2, one of size 2 with diagonal entry 1, and one of size 3 with 

diagonal entry 2. 

 

Theorem 9.3. (Jordan) Suppose T:Fn→ Fn and T has n eigenvalues (counting multiplicities). 

Then there exists a basis R for  Fn  such that J=MR(T) is a Jordan block matrix. 

Proof substitute. We will describe (working backwards) how to construct such a basis R= 

{v 1, ... ,vn} studying properties of its (hypothetical) vectors. Suppose that the size of B1, the 

first Jordan block, is k and the diagonal entry is λ. Then, by the definition of the matrix of a 

linear operator with respect to R and by the definition of  a Jordan block matrix, we get T(v1) 

= λv1+ 0v2 + ... + 0vn = λv1, i.e. v1 is an eigenvector for λ. This can be expressed differently 

as (T-λid)v1=Θ. Since the second column of J consists of 1,λ and all zeroes, we get that 

T(v2)=1v1+λv2. In other words, (T-λid)v2=v1. Extending this argument we get that for each vi 

from the first k vectors from R we have (T-λid)vi=vi-1, except that for v1 w have (T-λid)v1=Θ. 

Vectors v2, ... , vk are called vectors attached to the eigenvector v1, of the order 1,2, ... ,k-1, 

respectively. Now the structure of R becomes clear. It consists of several bunches of vectors. 

The number of the bunches is the number of Jordan blocks in J, each bunch is lead by an 

eigenvector and followed by its attached vectors of orders 1,2 and so on. It is all very nice in 

the hindsight, knowing what the  matrix J looks like, but how do we actually find those 

vectors? Or at least how do we find the matrix J? Well, kids, here comes the story. 

(1) Given a linear operator, you should find its matrix A in a basis of your choice, most 

likely your choice will be the standard basis S. 

(2) Having found the matrix A, find all eigenvalues solving the characteristic equation of 

T, i.e. det(A-λI)=0. 



(3) For each eigenvalue λi find the number of Jordan blocks with this particular 

eigenvalue as the diagonal entry. This is, of course, equal to the maximum number of 

linearly independent eigenvectors belonging to λi, in other words the dimension of the 

solution space of the system of equations (A-λiI)X=Θ, in other words n-rank(A-λiI). 

(4) Calculate sizes of Jordan blocks with λi as the diagonal entries using the formula: 

rank(A-λiI)
k-rank(A-λiI)

k+1 is the number of λi-Jordan blocks of the size at least k+1. It 

follows from the fact that ranks of matrices (A-λiI)
k and (J-λiI)

k are the same (because 

the matrices are similar) and that 
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 , and with 

each next power of the matrix, the line of ones goes one position to the right losing 

one 1, until there is nothing left to loose. Hence ranks of all used-to-be-λi blocks of the 

matrix J-λiI go down by one with each consecutive multiplication by J-λiI, except for 

those, whose ranks have already reached 0. The blocks corresponding to other 

eigenvalues retain their ranks. 

Hence we have: 

n-rank(A-λiI)  λi Jordan blocks of all sizes, 

rank(A-λiI)- rank(A-λiI)
2  λi Jordan blocks of size at least 2, 

rank(A-λiI)
2- rank(A-λiI)

3  λi Jordan blocks of size at least 3, 

and so on. 

(5) Repeat steps (1)-(4) for each eigenvalue λ1,λ2, ... , λn. 

 

To find the basis R, we find first attached vectors of the highest order, and then transform 

them by A-λiI till we get eigenvectors. Assuming that the largest order of an attached vector is 

k-1, we find the vector vk choosing  a solution to (A-λiI)
kX=Θ that satisfies (A-λiI)

k-1X≠Θ. 

Then we put vk-1=(A-λiI)vk, vk-2=(A-λiI)vk-1, ... , v1=(A-λiI)v2. If we have more than one λi 

Jordan block then we have to take care when we choose our attached vectors so that they and 

their eigenvectors are linearly independent. This may be tricky and you must be extra careful 

here. 



 

Problem. Find a basis R for R4 such MR(T) is a Jordan block matrix J, where  

T(x,y,z,t)=(-x-y-2z+t,2x+y+3z-t,2x+4z-t, 2x-2y+5z) 

Solution.First we form A - the matrix for T in the standard basis of R4. Obviously 
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calculate rank(A-I) = rank
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 = (r3-r2,r4-3r2) = rank
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 = 2. This means that J has 

two blocks with diagonal entries 1, but sizes of the blocks may be 2×2 and 2×2 or 1×1 and 

3×3. Now we must calculate ranks of matrices A-I, (A-I)2 and so on. It turns out that (A-I)2 is 

the zero matrix, so its rank is 0. By part (4) of our algorithm we get that J has 2 blocks of size 

at least 2 each, that is J has 2 blocks of size 2 by 2. Hence 
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J . Thus our basis 

R consists of two eigenvectors v1 and v3 and their attached vectors v2 and v4. The attached 



vectors are solutions of (A-I)2X=Θ, that do not satisfy (A-I)X=Θ. Since (A-I)2 is the zero 

matrix, the first system of equations is trivial (Θ=Θ), so the only condition v2 and v4 must 

satisfy is (A-I)X≠Θ. We can choose v2=(1,0,0,0) and v4=(0,1,0,0) getting v1=(-2,2,2,2) and 

v3=(-1,0,0,-2). These vectors form the columns of the change-of-basis matrix P such that J = 

P-1AP, i.e. 
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