WRITE YOUR NAME HERE:

ALGEBRA - FINAL EXAM

Write your final solutions on this sheet. Use another sheet for preliminary work. Do not talk, cheat or else...!

- 1. Let $F:V \rightarrow W$ and $G:W \rightarrow T$ be linear mappings. Prove that $G \circ F$ is a linear mapping and ker(F) \subseteq ker($G \circ F$).
- 2. Let F(x,y,z,t)=(-x-y-2z+t,2x+y+3z-t,2x+4z-t,2x-2y+5z). Find a Jordan block matrix J for F.
- 3. For the operator F from previous problem, find a basis for \mathbf{R}^4 such that $M_R(F)=J$.
- 4. Prove directly from definition, that for every linear mapping F, ker(F)= $\{\theta\}$ if and only if F is one-to-one.
- 5. Solve in complex numbers the equation $z^4 = (3i-2)^4$.