DIMENSION

Problem 1. Determine whether the given set of vectors is linearly independent in the indicated vector space.

(a) { $x^4 + x^3 + x^2 + x + 1, x^2 + x + 2, x$ } in **R**[x] over **R**,

(b){(1,0,1),(1,1,0),(0,1,1)} in \mathbb{Z}_2^3 over \mathbb{Z}_2 ,

(c) {(1,0,1),(1,1,0),(0,1,1)} in **R**³ over **R**,

(d) { $\sin x, \cos x, x$ } in $\mathbf{R}^{\mathbf{R}}$ over \mathbf{R} ,

(e) { $\sin^2 x$, $\cos^2 x$, $\sin 2x$, $\cos 2x$ } in $\mathbb{R}^{\mathbb{R}}$ over \mathbb{R} ,

(f) { $x_1, x_1 + x_2, x_1 + x_2 + x_3, ..., x_1 + ... + x_n$ } if { $x_1, x_2, x_3, ..., x_n$ } is linearly independent.

 $(g) \{ x_1 + x_2, x_2 + x_3, ..., x_{n-1} + x_n, x_n + x_1 \}$ if $\{ x_1, x_2, x_3, ..., x_n \}$ is linearly independent

(h) $\{x_1 + v, x_2 + v, \dots, x_n + v\}$ if $\{x_1, x_2, x_3, \dots, x_n\}$ is linearly independent and v is any vector,

(i) S, where $S \subseteq T$ and T is linearly independent,

(j) S, where $T \subseteq S$ and T is linearly independent,

(k){ $x_1, x_2, x_3, ..., x_n$ }, where $x_i \in span(S_i), x_i \neq \Theta$ for i=1,2, ..., n, sets S_i are finite and pairwise disjoint and the set $S_1 \cup S_2 \cup ... \cup S_n$ is linearly independent.

Problem 2. Find the dimension of each of the following vector spaces:

(a) \mathbf{R} over \mathbf{Q} ,

(b) \mathbf{C} over \mathbf{R} ,

(c)All polynomials with real coefficients, of degree \leq 7, with a root at 1, over **R**,

(d) \mathbf{F}^n over \mathbf{F} , where \mathbf{F} is any field,

(e)All polynomials with real coefficients, of degree ≤ 8 , divisible by x^2+1 , over **R**.

(f) $Span(\{\sin^2 x, \cos^2 x, \sin 2x, \cos 2x\})$ over **R**,

(g)Span($\{x_1, x_2, x_3, ..., x_{n-1}\}$), where $\{x_1, x_2, x_3, ..., x_n\}$ is a basis for V,

(h)Span($\{x_n, x_{n-1}, x_{n-2}, ..., x_1\}$), where $\{x_1, x_2, x_3, ..., x_n\}$ is a basis for V,

Problem 3. Let $U = \{(a,b,c,d) \in \mathbb{R}^4 | b - 2c + d = 0\}$ and $W = \{(a,b,c,d) \in \mathbb{R}^4 | a = d \& b = 2c\}$. Find the dimension of U,W and of U \cap W.

Problem 4. Prove that for every subset S of a vector space V:

- (a) $S \subseteq span(S)$,
- (b) $S \subseteq T \Rightarrow span(S) \subseteq span(T)$,
- (c) $span(S) = span(S \cup \{w\})$, for every vector $w \in span(S)$,
- (d) span(span(S)) = span(S),

Problem 5. Let **V** be a vector space over a field **F**. Let SUB(**V**) denote the set of all subspaces of **V**. For every $\mathbf{U}, \mathbf{W} \in \text{SUB}(\mathbf{V})$ and for every scalar $p \in \mathbf{F}$, let $\mathbf{U} + \mathbf{W} = \{\mathbf{u} + \mathbf{w} : \mathbf{u} \in \mathbf{U} \& \mathbf{w} \in \mathbf{W}\}$ and $p\mathbf{W} = \{p\mathbf{w} : \mathbf{w} \in \mathbf{W}\}$.

- (a) Prove that "+" is an operation in the set SUB(V)?
- (b) Is (SUB(V),+) a group? Is it commutative?
- (c) Prove that $p\mathbf{W}$ is a subspace of \mathbf{V} .
- (d) Prove that every linear combination of subspaces of V is a subspace of V.
- (e) Let W_1, W_2, \dots, W_k be subspaces of V. Prove that $dim(span(W_1, W_2, \dots, W_k)) \le dim(W_1) + dim(W_2) + \dots + dim(W_k)$.