SYSTEMS OF LINEAR EQUATIONS

Problem 1. Prove that matrix multiplication is associative.

Problem 2. A square matrix A is said to be *symmetric* iff $A=A^{T}$. Is it true that multiplication of symmetric matrices is commutative?

Problem 3. Show that $(AB)^{T} = B^{T}A^{T}$.

Problem 4.Reduce the matrices to their row echelon and row canonical forms and find their ranks

<i>A</i> =	2	1	3	-2	1	<i>B</i> =	1	2	3			5	1	2	6	1	0
	1	1	2	3	-3		4	5	6		<i>C</i> =	4	0	1	2	1	1
	2	2	2	2	2		7	8	9			3	5	2	3	2	1
	5	7	-3	-6	4		10	11	12			2	4	1	-1	2	2
	Гı	2	2	_	۲,							Г	2		- T		
<i>D</i> =		3	-2	5	4	Г	$\begin{bmatrix} 1 & 4 & 5 & -1 \\ 1 & 5 & 8 & -2 \end{bmatrix}$					2	_				
	1	4	1	3	5	$E = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$				2	F =		3	-7	'		
	1	4	2	4	3		24	51	-	$\frac{2}{2}$	-	-	- 6	1	l		
	2	7	-3	6	13		<i>~</i> .	, 1	2				5	-8	3		

Problem 5. Find a basis and the dimension to the solution space of the systems of linear equations:

	$\int x + 2y - 2z + 2s - t = 0$	x + 2y - z + 3s - 4t = 0					
(<i>a</i>) <	$\begin{cases} x + 2y - z + 3s - 2t = 0 \end{cases}$	(b) <	2x + 4y - 2z - s + 5t = 0				
	$\left[2x+4y-7z+s+t=0\right]$		2x + 4y - 2z + 4s - 2t = 0				

Problem 6. Find a homogeneous system of linear equations whose solution space is spanned by the set of vectors: $\{(1,-2,0,3,-1),(2,-3,2,5,-3),(1,-2,1,2,-2)\}$.

Problem 7. Show that for every two n×k matrices A and B,

 $rank(A+B) \leq rank(A) + rank(B).$

Problem 8. Let A be a square $n \times n$ matrix. Show that if $AX=\Theta$ has only the zero solution, then, for every vector B, AX=B has a unique solution.

Problem 9. Discuss solvability of the following systems of equations in terms of parameters *a* and *b*.

(a)
$$\begin{cases} ax + by + az + t = 1 \\ ax + y + az + t = 1 \\ x + y + az + at = 1 \end{cases}$$
 (b)
$$\begin{cases} x + 2y + 3z + 4t = a \\ 2x + 3y + 4z + 5t = b \\ 3x + 4y + 5z + 6t = a \\ 4x + 5y + 6z + 7t = b \end{cases}$$
 (c)
$$\begin{cases} x + ay + az = 1 \\ ax + ay + az = 1 \\ ax + ay + az = 1 \\ ax + ay + az = 1 \end{cases}$$

Problem 10. Find general solutions to the following systems of equations:

(a)
$$\begin{cases} 2x + 2y + 3z + 4t = 2\\ 2x + 3y + 4z + 6t = 0\\ 3x + 4y + 5z + 6t = 1\\ x + y + z + t = 1 \end{cases}$$
 (b)
$$\begin{cases} x + y + z - t + u = 1\\ x - y + z + t + u = 1\\ -x + y - z + t - u = 0 \end{cases}$$
 (c)
$$\begin{cases} x + y + z + t + u = 0\\ x - 2y + 3z - 4t + 5u = 0\\ x - 2y + 3z - 4t + 5u = 0 \end{cases}$$