
SYSTEMS OF LINEAR EQUATIONS 
 

Problem 1. Prove that matrix multiplication is associative. 
Problem 2. A square matrix A is said to be symmetric iff A=AT. Is it true that multiplication 
of symmetric matrices is commutative? 
Problem 3. Show that (AB)T=BTAT. 
Problem 4.Reduce the matrices to their row echelon and row canonical forms and find their 
ranks 
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Problem 5. Find a basis and the dimension to the solution space of the systems of linear 
equations: 
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Problem 6. Find a homogeneous system of linear equations whose solution space is spanned 
by the set of vectors: {(1,-2,0,3,-1),(2,-3,2,5,-3),(1,-2,1,2,-2)}. 
Problem 7. Show that for every two n×k matrices A and B, 

rank(A+B)≤rank(A)+rank(B). 
Problem 8. Let A be a square n×n matrix. Show that if AX=Θ has only the zero solution, 
then, for every vector B, AX=B has a unique solution. 
Problem 9. Discuss solvability of the following systems of equations in terms of parameters a 
and b. 
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Problem 10. Find general solutions to the following systems of equations: 
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