FIELDS AND COMPLEX NUMBERS

Problem 1. Show that multiplication of complex numbers is associative and distributive. Problem 2. Determine which of the following algebras are fields

$(a)(2^X,\cup,\cap)$	$(e)(2^{X}, \div, \cup)$
$(b)(2^X, \cap, \cup)$	$(f)(2^{X},\div,\frown)$
$(c)(2^X, \cap, \div)$	$(g)(\mathbf{R}^{\#}, \times, +)$
$(d)(2^X,\cup,\div)$	$(h)(R^{R},+,\times)$

Problem 3. Are the fields C and R isomorphic?

Problem 4. Verify that both $\mathbf{Q}(\sqrt{2})$ and $\mathbf{Q}(\sqrt{3})$ are fields. Are they isomorphic? Problem 5. Show that $(\mathbf{Z}_n, \oplus, \otimes)$ is a field iff *n* is a prime. Problem 6. Calculate

(a)
$$\left| \frac{1+4i}{4-i} \right|$$

(b) $\left| \frac{z}{\overline{z}} \right|$
(c) $\left| \frac{(3+4i)^4}{(3-4i)^3} \right|$

Problem 7. Find all roots of unity of order 6.

Problem 8. Show that for every n all roots of unity of order n form a group under multiplication. What well-known group is it isomorphic to?

Problem 9. Express the following complex numbers in the standard form a+bi.

(a)
$$\frac{1+i}{1-i}$$

(b) $\frac{2+i}{1+2i}$
(c) $\sqrt[3]{(1+i)^6}$

Problem 10. Find polar forms for the following complex numbers

(a) $3 + (3\sqrt{3})i$ (b)-3 (negative 3) (c) 2 + 2i(d) $1 - i\sqrt{3}$

Problem 11. Let $f(x) \in \mathbf{R}[x]$. Show that *z* is a root of *f* iff \overline{z} is a root of *f*.

Problem 12. Factor each of the following polynomials into a product of factors of degree at most 2.

(a) $x^{6} + 1$ (b) $x^{4} + 1$ (c) $x^{6} + x^{3} + 1$