ALGEBRAS AND GROUPS

Problem 1. In each of the following determine whether * is a binary operation on the indicated set X. If it is then indicate whether * is associative and whether it is commutative. Also discuss the existence of identity and inverses.

(a) m * n = mn+1, X=Z(b) m * n = n, X=Z(c) m * n = n, X=Z(d) m * n = 2m+n, X=Z(e) m * n = (m+n)/2, X=Z(f) $m * n = 2^{mn}$, X=Z(g) (x,y) * (p,q) = (xp,yq), $X=Z\times Z$ (h) (x,y) * (p,q) = (xp,y+q), $X=Z\times Z$ (i) (x,y) * (p,q) = (xq,y+p), $X=R\times R$ (j) (x,y) * (p,q) = (x+p,y+q), $X=R\times Q$ (k) (x,y) * (p,q) = (x+q,y+p), $X=R\times R$ (l) (x,y) * (p,q) = (x+p,y+q), $X=R\times R$ (m) x * y=x+y+xy, X=R

Problem 2. Show that if a * a = e for all *a* from a group G, then G is abelian.

Problem 3. A function *f* mapping the XY plane onto itself is called an isometry iff *f* preserves distances between points, i.e. $dist(P_1,P_2) = dist(f(P_1),f(P_2))$. Show that all isometries of the plane form a group (with function composition as the group operation).

Problem 4. In those algebras from problem 1 which are groups, find some nontrivial subgroups.

Problem 5. Find all subgroups in the following groups

(a) $(\mathbf{Z}_{6}, \bigoplus)$ (b) $(\mathbf{Z}_{7}, \bigoplus)$ (c) $(\mathbf{Z}_{6}^{\#}, \bigotimes)$ (d) $(\mathbf{Z}, +)$ (e) (\mathbf{S}_{3}, \circ)

Problem 6. Determine which of the following pairs of groups are isomorphic

(a) $(\mathbf{Z}_6, \bigoplus)$ and $(\mathbf{Z}_7^{\#}, \bigotimes)$ (b) $(\mathbf{Z}_6, \bigoplus)$ and $(\mathbf{Z}_{12}, \bigoplus)$ (c) $(\mathbf{Z}_6, \bigoplus)$ and $(\mathbf{Z}, +)$

(d) $\mathbf{Z} \times \mathbf{R}$ and $\mathbf{R} \times \mathbf{Z}$ with operations defined as componentwise addition (like in part (l) of problem 1).

(e) (\mathbf{Z} ,+) and (\mathbf{Z} ,*), where x * y = x + y - 1 (first verify that (\mathbf{Z} ,*) is a group).

(f) $(\mathbb{Z}_{8}, \bigoplus)$ and $(2^{X}, \div)$, where X={1,2,3}.

Problem 7.Let H and K be two subgroups of a group G

(a) show that $H \cap K$ is a subgroup of G

(b) show that $H \cup K$ is not necessarily a subgroup of G.