POLYNOMIALS AND VECTOR SPACES

Problem 1. Let $f(x) \in \mathbf{R}[x]$. Show that, if the degree of *f* is odd then *f* has at least one root in **R**. **Problem 2.** Calculate

(a) (x+1)² in Z₂[x]
(b) (x-1)³ in Z₃[x]. Remember that in Z₃ (-1)=2, so x-1=x+2.
(c) (1+x+x² + x³)(2-x+3x²) in Z₂[x].
Problem 3. Perform the long division
(a) x⁵ + 2x⁴ + 3x³ + 2x² + x + 1 by 2x² + 3x + 1
(b) x⁴ + 1 by 2x + 3
in Z₃[x], then in Z₅[x] and then in C[x] ("3" is defined as 1+1+1, "2" is defined as 1+1).
Problem 4. Find all roots of

(a) $x^4 + 1$

(b) $x^{2} + 3x + 1$ (c) $x^{5} + 2x^{4} + 3x^{3} + 2x^{2} + x + 1$

in $Z_3[x]$, in $Z_5[x]$.

Problem 5.

Problem 6. Prove that for every prime number *n* there exists a polynomial $f(x) \in \mathbb{Z}_n[x]$ such that for each $k \in \{0, 1, ..., n-1\}$ $f(k) \neq 0$.

Problem 7. Determine whether or not the following sets are vector spaces over indicated fields:

- (a) **Z** over **Z**₂, with ordinary addition, and scalar multiplication defined as follows: 0r=0, 1r=r for every $r \in \mathbf{Z}$,
- (b) \mathbf{Z}_4 over \mathbf{Z}_2 with natural operations,
- (c) C over **R**,
- (d) **R** over **C**,
- (e) $\mathbf{Q}_{\mathbf{b}}[\mathbf{x}]$ (all polynomials from $\mathbf{Q}[\mathbf{x}]$ with degree $\leq n$) over \mathbf{R} ,
- (f) $\mathbf{Q}_{\mathbf{n}}[\mathbf{x}]$ over \mathbf{Q} ,
- (g) All polynomials from $\mathbf{R}[x]$ with exactly two different roots, over \mathbf{R} ,
- (h) $\mathbf{R}_{\mathbf{b}}[\mathbf{x}]$ (all polynomials from $\mathbf{R}[\mathbf{x}]$ with degree $\leq n$) over \mathbf{R} ,
- (i) All functions $f: \mathbf{R} \rightarrow \mathbf{R}$ such that f(0)=1, over \mathbf{R} ,
- (j) All functions $f: \mathbf{R} \to \mathbf{R}$ such that f(1)=0, over \mathbf{R} ,
- (k) All continuous functions $f: \mathbf{R} \rightarrow \mathbf{R}$, over \mathbf{R} ,
- (1) All functions $f: \mathbf{R} \to \mathbf{R}$ which are discontinuous at 0, over \mathbf{R} ,
- (m)All subsets of a set X, over \mathbb{Z}_2 , with the symmetric difference as vector addition, and with $0A=\emptyset$ and 1A=A for every $A\subseteq X$,
- (n) All real sequences (a_n) such that $\lim a_n = 0$, over **R**,

Problem 8. Prove that in a vector space p(v-u)=pv-pu.

Problem 9. The intersection of any collection of subspaces of some linear space V is a

subspace of V. Show that this is not necessarily true for the union of subspaces,

Problem 10. The real plane, \mathbf{R}^2 , is a vector space over **R**. Describe, in geometrical terms, all subspaces of \mathbf{R}^2 .