TUTORIAL 4. FIELDS AND GROUPS

- 4.1. Prove
 - (a) $(\forall n,k)$ (nmod k)mod k = nmod k
 - (b) $(\forall n,k,p) (n+p) \mod k = (n \mod k + p \mod k) \mod k$
 - (c) $(\forall n,k,p) (np) \mod k = ((nmod k)(pmod k)) \mod k$
- 4.2. Prove
 - (a) multiplication *mod n* is associative, i.e. $(a \otimes b) \otimes c = a \otimes (b \otimes c)$.
 - (b) addition *mod n* is associative.
 - (c) multiplication mod n is distributive with respect to addition mod n.
- 4.3. Calculate, solve equations
 - (a) $17 \mod 4$ (b) $4 \mod 17$ (c) $(-2) \mod 5$ (d) $(2x = 1) \mod 7$ (e) $(2x = 1) \mod 6$ (f) $(5x = 1) \mod 9$ (g) $(x^2 = 3) \mod 11$ (h) $(2x + 3 = 0) \mod 5$ (i) $(x + k = 0) \mod 6$
- 4.4. Determine which of the following algebras are fields. Do this in two steps : first verify if the set is a group with respect to the first operation, and next if the set without the identity element of the first operation is a group with respect to the second operation.

$(a)(2^{X},\cup,\cap)$	$(b)(R^{R},+,\times)$
$(c)(2^{X}, \cap, \cup)$	$(d)(\mathbf{R}^{\#},\times,+)$
$(e)(2^{X}, \cap, \div)$	$(f)(2^{X},\div,\frown)$
$(g)(2^X,\cup,\div)$	$(h)(2^X, \div, \cup)$

- 4.5. Show that $(\mathbb{Z}_n \{0\}, \otimes)$ is a group iff *n* is a prime.
- 4.6. Show that for every *n* all complex roots of 1 of order *n* form a group under multiplication.
- 4.7. Show that all complex roots of 1 of all integer orders form a group under multiplication.
- 4.8. Verify if (\mathbf{R}^+ ,#) is a group, where a#b=a²b².
- 4.9. Show that if (**F**,#,&) is a field then for every positive integer k (\mathbf{F}^{k} ,%) is a group, where (a_1,a_2, \ldots, a_k) % $(b_1,b_2, \ldots, b_k) = (a_1#b_1, a_2#b_2, \ldots, a_k#b_k)$.