TUTORIAL 5. VECTOR SPACES

- 5.1. Determine whether or not the following sets are vector spaces over indicated fields:
 - a. Z over Z₂, with ordinary addition, and scaling defined as 0r=0, 1r=r for every $r \in Z$,
 - b. Z_4 over Z_2 with natural operations,
 - c. C over R,
 - d. R over C,
 - e. $Q_n[x]$ (all polynomials from Q[x] with degree $\leq n$) over R,
 - f. $Q_n[x]$ over Q,
 - g. All polynomials from R[x] with exactly two different roots, over R,
 - h. $R_n[x]$ (all polynomials from R[x] with degree $\leq n$) over R,
 - i. All subsets of a set X, over Z_2 , with the symmetric difference as vector addition, and with scaling defined as $0A = \emptyset$ and 1A = A for every $A \subseteq X$,
 - j. $(\mathbf{R}^+, \mathbf{x})$ over $(\mathbf{R}, \mathbf{+}, \mathbf{x})$ where + and \mathbf{x} denote ordinary addition and multiplication, and scaling defined as $p \cdot v = v^p$.
- 5.2. Prove that in a vector space $p \cdot (v-u) = p \cdot v p \cdot u$.
- 5.3. The intersection of any collection of subspaces of some linear space V is a subspace of V. Show that this is not necessarily true for the union of subspaces.
- 5.4. The real plane, R^2 , is a vector space over R. Describe, in geometrical terms, all subspaces of R^2 .
- 5.5. Prove that
 - a. $S \subseteq span(S)$
 - b. $S \subseteq T \Rightarrow span(S) \subseteq span(T)$
 - c. span(span(S)) = span(S)
 - d. $v \in span(S) \Leftrightarrow span(S) = span(S \cup \{v\})$