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Abstract: The Kagan-Linnik-Rao theorem on characterization of the normal law by constant
regression of the sample mean on residuals is extended by widening the class of conditioned
random variables. The integrability assumption introduced in Kagan-Rao theorem on
characterization of the normal law by constant regression of a polynomial in the sample mean on
residuals may be reduced to the minimal necessary condition.
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1. Introduction

At the begining of numerous investigations in characterization of probability
distributions by constant regression of some functions of independent r.v’s on residuals stands

the following celebrated result:

THEOREM 1 (Kagan, Linnik, Rao (1965)). Let X,,...,X, be i.i.d. r.v’s with EX, =0,
n=3.1If

E(X|X, -X,...X,-X) = 0,

where X = (X,+...+X )/n, then X, is a normal r.v.

This and other results in this area are partial solutions of the following general

problem:
Let X,,...,X, be independent r.v's and let & be a real measurable function on R”,

such that E|h(X,,...,X)| < oo . Assume that




336 J. Pusz and J. Wesolowski

(1) E(h(X,,....X)|X, - X,...,.X, -X) = const .

What are the distributions of X’s?

As for as we know the following questions were investigated up to now (details are
omitted):

a)If h = X then X’s are normal.

b) If h =X? then X's are normal.

o) If h= P(}—(), where P is a polynomial then X’s are normal.

d)If h= éX;' then k’s are gamma.

elIf h= é’j‘g(Xk , where g is locally integrable on R and characteristic functions have only
"short gaps" then X’s have a density of the form fix) =exp(« E EO)-wady).

f)If h =£"|1Xk then X’s are Poisson.

g) If h=[]X;' then X's are Poisson.

k=1

h) If h = exp(a)_{) then X’s have densities being a product of normal density and some

periodic function (if (1) holds for two incommesurable values of « s then X’s are normal).

)Ifh=T](1+X; ') then X’s are binomial or negative binomial.
k=1

j) If h =T](X,-6,) - c[](X,-0,) then X’s are binomial or negative binomial.
k=1 k=1

K)If h=11Z, - (-1)"[1Z; , where Z, = (X, +ia)/(m,+ict,), and Z,” is its conjugate then X's
ksl ksl

are generalized hyperbolic secant .
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For details see: Kagan et al.(1965) for (a), Kagan et al.(1973) for (a,d), Wesolowski (1987)
for (b), Kagan and Rao (1988) for (c), Khatri and Rao (1968) for (d), Bondesson (1974) for
(e), Wesolowski (1989) for (f), Wesolowski (1992) for (g,h,i), Pusz (1992) for (j), and Pusz
(1993) for (k).

It should be emphasized that problems of this kind are closely related to the following '
question of estimation theory: Let X|,...,X, be a sample from the location family with a
distribution function F = F(-- 6). Assume that h(X,,...,X)) is an unbiased estimator of some
parametric function. What are possible distributions F if h is @ minimum variance estimator?

For further details in this direction see Kagan et al.(1973), Kagan (1989) or Wesolowski
(1992).

In this paper we are concerned with two issues. In Section 2 we deal with a

characterization by the condition (1) with h(x,,...,x,) = H(x,) ¥ a,x,- G(x,), obtaining a
k=1

straightforward generalization of Theorem 1. In Section 3 we prove that the integrability
condition imposed in the Kagan-Rao characterization, mentioned in (c), may be reduced to

the minimal necessary condition.

2. On the Kagan-Linnik-Rao theorem

Let X,,...,X, be independent r.v’s, H, G two real measurable functions anda,,...,a

some real numbers. Consider (1) in the following version
) E(HX)Y aX | 1) = E(GX)| 1),
k=1

where Y = (X, —)—(,...,Xn—}—() is the vector of residuals. Obviously for H =const, G =0 and

a,=1/n, k=1,...,n, (2) takes the form of the condition from Theorem 1. Hence the result
given in Theorem 2 below is a straightforward extension of that celebrated characterization.
From (2) it will follow that X,,...,X  are normal r.v’s and for X, we obtain a functional

equation in some neighborhood of the origin. This equation is discussed in the remarks

following the formulation of Theorem 2. The proof of the main result ends this section.




338 J. Pusz and J. Wesolowski

THEQREM 2. Let Xl,..:,Xn, n =3, be independent r.v’'s, H, G be real measurable
functions and let a,,...,a, be real numbers. Assume that H(X,), XHX), G(X,),Xz‘;‘.‘..,X,l
are integrable. If EH(X,) # 0 and the condition (2) holds then X, is Gaussian if only

a, # 0, k=2,...,n and in some neighborhood V of the origin
(3) E(a,HX)X, - G(X,))e™ = (At + BYEH(X,)e"™,

where A and B are constants (B- real, 4- possibly complex).

REMARKS:
1° Let H(x) =yx +6 and G(x) =a,yx*+(a,6 - a)x -8, where «,f3,7,d are real constants such

that o?+B2+42+8%> 0. Then (3) takes the form (X=X,)
“4) E(aX +B)e™ = (At + B)E(yX + 8)e™.

Then three cases are possible: X is degenerate or Gaussian or gamma. ‘
Take first ad = B-y. Then (4) yields E(aX +B)exp(irX) =0 = E(vX +8)exp(itX). Hence
it is easy to see that X is degenerate.
Assume now that ad # 8y, and that X is nondegenerate. Then ym +6 # 0, where

m=EX (X is integrable by the assumption), and

) B-om+B

By the form of the equation (4) we are allowed to differentiate its both sides. Putting then
t=0 we find that

(©) 4 =i 0Py
(ym + 6)?

where ¢%=Var(X) > 0.

Take now «=0. Hence a #0 and (4) yields for r€ V
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0B -8

x

(Ine(r))’ = i-éAt-l-i
[ 4

where ¢ is the characteristic function of X. Consequently by (5) and (6) we get
@(r) =exp(itm -12¢*/2) in V. And thus X is a normal r.v.

Finally consider the case v > 0. Then by (4) we obtain in V

ng(r) = ~i 21 - i 0 "B inar s yB-0) + C,
Y Ay?

where C is some constant. By (5), (6) and the fact that the gamma distribution is determined

by its moments we conclude that X is a gamma type r.v.

2° Assume that H is such a function that F(x) = § HdF is a distribution function, where F

-0o

is the distribution function of X. Let G(x) =(ax-e")H(x) or G(x) =(alx—%)H(x) then (4)

takes the form

(At + B) I etd F(x) = I e*e=d F(x) or J }l.e""dﬁ(x).

It is well known (see Ch.6 in Kagan et al.(1973)) that in both the cases F is a gamma type
distribution function. Consequently H(x)dF(x) =y(x)dx, where v is a gamma type density.
3° For further discussion of some problems connected with equation (4) see Bondesson

(1974), where a theoretically useful notion of short gap for characteristic functions is

introduced.

Proof of Theorem 2:

Firstly observe that in conditioning the residuals may be replaced by the vector

(X, -X),...,X, -X,) (such conditioning was considered in the original KLR theorem). Then
from (2) we obtain

EH(X,); aX, exp[i(-—X,t}; I+ Y 1.X)]= EG(X,)exp[i(-X’,Z L+ Y LX)
= . k=2 k=2 k=2
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Now making use of the assurﬁption EH(X,) # 0 and considering tz,...,tn', sufficiently close

to zero we have

E(a,H(X,)X, - G(X,))exp( —iX,k)’:jz AR

+ 24

n axl
EHOG) exp(-i%, £1) v Ee

Exei’txn
* =0,

Since n=3 then if only a,# 0 by lemma 1.5.1 in Kagan et al.(1973) ¢,'(t)=(Ay
+B,)¢, (1), where ¢, is a characteristic function of X,, A4,, B, are constant and |¢z] is
sufﬁéiently small, k=2,...,n. Hence () =A%2+Bs +C, in some neighborhood of the

origin. Consequently X,,...,X, are normal since this distribution is determined by its

moments. At the same time we have got also the equation (4).0J
3. On the Kagan-Rao theorem

In Kagan and Rao (1988) the following characterization of the normal distribution is

given: Assume that X,,...,X arei.i.d. (k+1)-integrabler.v’s, P isa polynomial of degreek =2
and n=2k. Then E(P()—E) | X, —)-Z,..’.,Xu—)?)=const iff X, is Gaussian. It was also proved
in this paper that if P(X) =0 then the assumption of (k+1)-integrability may be weakened
to the minimal necessary condition E|X,|* < o.

The aim of this section is to prove that it suffices to assume k-integrability also in the

general situation. Then the Kagan-Rao theorem takes the form:

THEOREM 3. Let X,,...,X bei.i.d. r.v’sand P be a polynomial of degree k=2, Ifn > 2k

and E|X,|* < oo then the condition
(7 E(P()_()IXl -X,....X, -X) = const

holds iff X, is Gaussian.

Proof. Thanks to the original Kagan-Rao theorem it suffices to prove that X, is (k+1)-
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integrable. Similarly as in the proof of the Theorem 2 we have from (7)

E(P(X)exp(i(t,X, + ... +,X))) = c[] ()

=l
for ¢, +...+1,=0, where ¢ is a characteristic function of X,, and ¢ a real constant. Put in the
above equation ¢, =5, t,=t, t;=-5-t, t,=...=t =0. Then for sufficiently small H and H we
obtain
89(s) +g®(0) +g®(=5-1) = 0"(5),8(1),8"(~5-1),...,8*"(5),8* "(1),8* " (~s5-1)) ,
where g=Inp, g™ is its m-th derivative and Q is a polynomial.
Integrate the above equation from 0 to x > 0, sufficiently small, with respect to s

x

g% V(x) - g*1(0) + xg®(e) + 1 g®(-s-1)ds = I Qds .

Consequently

X

xg®() = 1 Qds + g*V(-x-1) - g*M(-1) + g*(0) - g*P(x) .

Since X, is k-integrable then the right hand side of this identity is differentiable with respect

to t (in a neighborhood of the origin). Hence g is (k+1)-integrable and E|X, |¥!' < o0 .00

In Kagan (1991) a method for solving a class of functional equations arising in some
characterization problems (including the Kagan-Rao theorem) was presented. The assumption
of (k+1)-integrabiiity of the r.v’s involved was replaced by the condition of (k+1)-
differentiability of the characteristic function. Our argumentation from the above proof may
be applied directly to reduce this condition to the minimal assumption of existing the

derivative of the k-th order. For example Theorem 2.1 from Kagan (1991) takes the

following form.

!
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THEOREM 4. let f be a k-differentiable characteristic function and g=Inf in a
neighborhood of the origin. Consider for any real ,,...,7, such that |t,| < e,...,” <g,e>0

and bt +...+b,t =0 the equation

P(S,,....5,) = 0,

where

=Y a,89¢,),j=1,...k,

m=]

a, ,j=1,...,k,m=1,...,n, are some real constants and P is a polynomial of the form
P(u,,...,u,) = Au:t +Bu, + P (u,,...,u,_,),

with AB # 0 and P, being a polynomial of the (k-1) order. If the coefficients 4, b,satis-

fy conditions

A+ tapy > 0,0,,...a, #0,b..b, #0

then f'is a characteristic function of the Gaussian distribution.
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