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Abstract
We consider a problem of allocation of a sample in two- and three-stage sampling. We
seek allocation which is both multi-domain and population efficient. Choudhry et al.
(Survey Methods 38(1):23–29, 2012) recently considered such problem for one-stage
stratified simple random sampling without replacement in domains. Their approach
was through minimization of the sample size under constraints on relative variances
in all domains and on the overall relative variance. To attain this goal, they used
nonlinear programming. Alternatively, we minimize here the relative variances in all
domains (controlling them through given priority weights) as well as the overall rela-
tive variance under constraints imposed on total (expected) cost. We consider several
two- and three-stage sampling schemes. Our aim is to shed some light on the analytic
structure of solutions rather than in deriving a purely numerical tool for sample allo-
cation. To this end, we develop the eigenproblem methodology introduced in optimal
allocation problems in Niemiro and Wesołowski (Appl Math 28:73–82, 2001) and
recently updated in Wesołowski and Wieczorkowski (Commun Stat Theory Methods
46(5):2212–2231, 2017) by taking under account several new sampling schemes and,
more importantly, by the (single) total expected variable cost constraint. Such approach
allows for solutions which are direct generalization of the Neyman-type allocation.
The structure of the solution is deciphered from the explicit allocation formulas given
in terms of an eigenvector v∗ of a population-based matrixD. The solution we provide
can be viewed as a multi-domain version of the Neyman-type allocation in multistage
stratified SRSWOR schemes.
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1 Introduction

Consider a stratified SRSWOR in a population U of size N with strata U1, . . . ,UI ,
which form a partition ofU , and let Nh denote the size of the stratumUh . For a variable
Y inU , we denote yk = Y(k), k ∈ U . The standard estimator of the total τ = ∑

k∈U yk
has the form τ̂st = ∑I

h=1 Nh ȳh , where ȳh = 1
nh

∑
k∈Sh

yk with nh denoting the size of
the sampleSh drawn from the stratumUh , h = 1, . . . , I . The variance of this estimator

is D2(τ̂st ) = ∑I
h=1

(
1
nh

− 1
Nh

)
N 2
h S

2
h , where S2h = 1

Nh−1

∑
k∈Uh

(yk − ȳh)2 is hth

stratum population variance.
The basic question for such a setting is the optimal allocation, n = (n1, . . . , nI ), of

the sample among the strata. To this end, one may assign a given (relative) variance of
the estimator τ̂st and minimize the costs expressed, for example, by the total sample
size

∑I
h=1 nh . A related approach is to fix a total sample size n = n1 + · · · + nI and

minimize the (relative) variance. Both cases are examples of the classical Neyman
optimal allocation procedure which, for example, in the second case results in the
allocation nh = n Nh Sh∑I

g=1 NgSg
, h = 1, . . . , I . In both settings, the result is a simple

consequence of minimization using the Lagrange function or can be concluded via the
Schwartz inequality.

Recently, we observe a growing interest in more refined allocation methods (also
in two-stage sampling) based on nonlinear programming ensuring efficient estimation
procedures for the whole population, see, for example, Clark and Steel (2000), Led-
nicki and Wieczorkowski (2003), Clark (2009), Khan et al. (2010), Münnich et al.
(2012), Gabler et al. (2012), Ballin and Barcaroli (2013), Valliant et al. (2013, 2015).
Much less is known for allocation procedures which are domains efficient or both pop-
ulation and domains efficient—see, for example, Costa et al. (2004), Longford (2006),
Choudhry et al. (2012)—referred to asCRH in the sequel,Molefe andClark (2015) and
Keto and Pahkinen (2017). All of them are again based on nonlinear programming and
are designed for single-stage sampling schemes. To the best of our knowledge, the only
examples of domains-efficient allocation procedures in two-stage sampling schemes
are those related to the eigenproblem approach. Such approach will be explained and
discussed in the sequel.

In the stratified SRSWOR, we may treat strata as domains (consequently, we will
change the subscript h denoting a stratum into i denoting a domain), that is, we would
like to control not only the overall (relative) variance but also (relative) variances in
each of the domains. In the context of bothmulti- and small-area estimations, Longford
(2006) suggested to minimize (under a constraint given by the total sample size) the
objective function

I∑

i=1

Pi D
2(ȳi ) + GP+D2(ȳst ), (1)

where Pi , i = 1, . . . , I are relative preassigned weights which describe “importance”
of domains, P+ = ∑I

i=1 Pi andG is aweight responsible for a priority for the variance
of the population mean estimator. In the context of model-assisted methodology, this
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Neyman-type sample allocation for domains-efficient… 565

approach has been recently developed in Molefe and Clark (2015). Mathematically,
the problem reduces to the Neyman allocation scheme. Similarly, when a given value
is assigned for (1), the total sample size is minimized. The weights (Pi , i = 1, . . . , I )
are designed in order to cover, at least to some extent, jointly the optimality issue
for domains and for the whole population. As pointed out in Friedrich and Münnich
(2018), the approach of Gabler et al. (2012) can be used also in this context (actually,
they mention the case with GP+ = 0). Since the objective function (1) is a weighted
sum of domains and population variances, this approach does not give any convenient
tool to control the quality of population and domains means estimators. Moreover, it
is not clear how to assess the impact of values of weights Pi , i = 1, . . . , I , and GP+
on variances D2(ȳi ), i = 1, . . . , I , and D2(ȳst ). These issues are clearly visible in
the numerical example given in “Appendix,” where such approach is confronted with
the one we propose in this paper.

Our approach can be treated as a an alternative to a direct setting of CRH. They
proposed an approach, where also both multi- and small-area estimations were con-
sidered. CRH minimize the total sample size

g(n) = n1 + · · · + nI

under the constraints for relative variances of estimators of domain totals

Ti := N 2
i

(
1
ni

− 1
Ni

)
S2i
τ 2i

≤ RVoi , i = 1, . . . , I , (2)

where τi = ∑
k∈Ui

yk is the total for the domain Ui , i = 1, . . . , I , and the constraint
on the relative variance of the estimator of population total

S := 1
τ 2

I∑

i=1

(
1
ni

− 1
Ni

)
N 2
i S

2
i = 1

τ 2

I∑

i=1

Tiτ
2
i ≤ RVo. (3)

Note that in this approach one specifies conditions for each of the domains and for the
whole population separately. The problemwas solved under additional box constraints
of the form 0 < ni ≤ Ni , i = 1, . . . , I , by a nonlinear programmingmethod involving
the popular Newton–Raphson algorithm.

The NLP solution, as the one described above, is an efficient tool for applications.
Such purely numerical approaches to allocation problems are popular in real surveys.
A drawback of suchmethods is that they gave just numerical values and do not provide
any information on the structure of the solution, which, for example, can be important
for designing priorities for the domains.

Now we will describe an alternative approach to the problem of domains-overall-
efficient allocation in the sampling scheme considered in CRH. The approach will
allow to see the analytic form of the solution. The respective expression is based on
a unique direction in the space RI , where the dimension I is equal to the number of
domains. The rest of this section is just a warm-up illustration for the eigenproblem
methodology we will apply in full swing in several multistage schemes in the main
part of the paper.
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566 M. G. M. Khan, J. Wesołowski

We would like to minimize each Ti , i = 1, . . . , I , as well as S under the constraint
on the total size of the sample. It can be achieved in the following way. To each domain
Ui , its (known) priority weight κi > 0 is assigned. These weights describe ratios of
relative variances through

Ti
Tj

= κi
κ j

∀ i, j = 1, . . . , I .

Equivalently, we can write

(
1
ni

− 1
Ni

)
N2
i S

2
i

τ 2i
= κi T , i = 1, . . . , I , (4)

where T is an unknown positive constant. Such approach allows to fully control
domains variability of (relative) variances of estimators—see the numerical example in
“Appendix.”Moreover, under the above constraint, the unknown parameter T controls
not only relative variances in domains but also the overall relative variance S of the
estimator of the population mean. It follows from the fact that under (4), due to (3),
the relative overall variance S can be written as

S =
(

1
τ 2

I∑

i=1

κiτ
2
i

)

T .

Therefore, when we optimize relative variances within domains, the overall relative
variance gets automatically optimized as well. This general rule will hold also for the
multistage schemes considered in the sequel.

Upon denoting γ 2
i = N2

i S
2
i

τ 2i
, i = 1, . . . , I , Eq. (4) can be written as

γ 2
i

κi ni
− γ 2

i
κi Ni

= T , i = 1, . . . , I . (5)

Now we denote vi = ni
√

κi
γi

, i = 1, . . . , I , and, due to (5), the constraint
∑I

i=1 ni = n
assumes the form

1 = n
∑I

i=1
γi√
κi

vi
. (6)

Multiplying (5) by vi and using (6), we get

n−1 γi√
κi

I∑

r=1

γr√
κr

vr − γ 2
i

κi Ni
vi = T vi , i = 1, . . . , I ,

which is equivalent to

(
a aT

n − diag(c)
)

v = T v
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Neyman-type sample allocation for domains-efficient… 567

with v = (v1, . . . , vI )
T , where

a =
(

γi√
κi

, i = 1, . . . , I
)T

, c =
(

γ 2
i

κi Ni
, i = 1, . . . , I

)T

and diag(c) is a diagonal matrix with the vector c being its diagonal. Consequently,
by the Perron–Frobenius theorem (for more details, see the Proof of Theorem 2.1),

there exists a unique simple positive eigenvalue λ∗ of the matrix D = a aT

n − diag(c)
and the respective eigenspace is spanned by a vector v∗ with all components positive.
This vector, v∗, up to normalization, that is the respective direction in the space RI

is responsible for the efficient allocation. Therefore, in our problem above, T = λ∗,
v = (vi , i = 1, . . . , I ) = v∗ and thus

ni ∝ γi√
κi

v∗
i , i = 1, . . . , I .

Using again the constraint on the sample size, we see that

ni = n
γi v∗

i√
κi

∑I
r=1

γr√
κr

v∗
r

, i = 1, . . . , I .

Moreover, with this optimal allocation

Ti = κiλ
∗, i = 1, . . . , I and S = λ∗

τ 2

I∑

i=1

κiτ
2
i .

Remark 1.1 Of course, there is an alternative numerical solution of this problem—see,
for example, Lednicki and Wesołowski (1994) (referred to as LW below). From (5),
one gets

ni = γ 2
i Ni

κi Ni T+γ 2
i
, i = 1, . . . , I . (7)

Now the sample size constraint leads to the equation

n =
I∑

i=1

γ 2
i Ni

κi Ni T+γ 2
i

(8)

for unknown T . It is obvious that there exists a unique positive solution T = T ∗, which
has to be derived numerically. Then, the allocation is given by (7) with T = T ∗.

As wementioned above, there are alternatives for the eigenproblem approach to the
(domains-population)-efficient allocation issue in the case of SRSWOR in domains.
Except for a possibility mentioned in Remark 1.1, the same allocation can be obtained
(up to box constraints) by CRH methodology if Ti := κi T ∗ (with the value of T ∗
as computed in the eigenproblem procedure) and g is minimized through the NLP
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568 M. G. M. Khan, J. Wesołowski

procedure. Similarly, each of these three approaches (CRH, LW and eigenproblem)
can be applied in the case of stratified SRSWOR in each of the domains. It suffices to
start the procedure with the Neyman allocation in every domain.

However, the situation changes drasticallywhen two-stage (ormultistage) sampling
is taken under account. Then, as it will be explained in the following sections, even
in the simplest case of a two-stage sampling with SRSWOR at both stages (and no
stratification), the formula relating the sizes of samples at the first and the second stage
with variances, an analog of the one which lead to (7), does not allow to get a simple
equation, as (8) in Remark 1.1 for the unknown T . Therefore, such direct numeri-
cal approach is not possible. To the best of our knowledge, no analogs of the NLP
procedure from CRH are available in the literature in the multistage setting. Never-
theless, nonlinearly constrained optimization solvers, for example MINOS, MOSEK
or IPOPT, available on the Web through NEOS server can be used as potential tools
for NLP answers to the two-stage extension of the original CRH problem.

It appears that in such as well as in a more complicated situation, optimal allocation
issue can be conveniently handled through the eigenproblem methodology, which
provides insight into the structure of the optimal solutions, though in some non-typical
cases it may give not the optimal but only approximately optimal results. It suffers
from the same drawbacks as the original Neyman optimal allocation; i.e., the natural
box constraints can be violated and the solution typically is not integer valued. The
main aim of the present paper is to show how such an eigenproblem approach works
in several new settings involving multistage sampling. In Sect. 2, we consider two-
stage sampling with stratified SRSWOR on both stages. Special simplified cases are
described in Sect. 3. Then, we deal with the situation in which at one of the stages pps
sampling with replacement is used while at the other the sample is drawn according
to the SRSWOR. Finally, in Sect. 5 we analyze three-stage sampling with SRSWOR
at every stage. In all these cases, the allocation problem with the total cost constraint
is solved via an eigenproblem for rank-one perturbations of diagonal matrices. The
case of the pps sampling with replacement at the first stage and the SRSWOR at the
second stage is rather special—then, the eigenproblem is for a matrix of rank one and
thus an analytic form of the eigenvector responsible for allocation is available.

The eigenproblem approach to efficient allocation in domains originally was pro-
posed in Niemiro and Wesołowski (2001) (NW in the sequel) and recently developed
in Wesołowski and Wieczorkowski (2017) (WW in the sequel). The major differ-
ence between the setting of these two papers and our setting is the form of the cost
constraints: Here, we consider the single total cost constraint, while two constraints,
one on the sample size of the PSUs sample and one on the expected sample size of
the SSUs sample, were imposed jointly in these earlier papers. There are important
consequences of such a change in the cost constraints. Due to the form of the cost
constraint, our solution is a direct generalization of the Neyman-type allocation. In
particular, it gives the Neyman-type solution in case when there are no domains (i.e.,
the whole population is a single domain). At the technical level, the population matrix
D, everything is based on, is a rank-one perturbation of a diagonal matrix, while it
was a rank-two perturbation of a diagonal matrix in NW and WW. There is also an
important difference with NW andWWwith respect to the structure of the allocation.
The common feature is that there is an eigenvector v∗ of the matrix D which plays
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Neyman-type sample allocation for domains-efficient… 569

important role in the optimal allocation; however, in the case we consider here, it
influences only the optimal allocation at the first stage, while in the cases considered
in NW andWW the optimal allocation on both stages depends explicitly on respective
version of v∗.

2 Two-stage sampling with stratified SRSWOR at both stages

For any i = 1, . . . , I , the subpopulation Vi of primary sampling units (PSUs) of i th
domain in U is stratified: Vi = ⋃Hi

h=1 Vi,h . Let Mi,h denote number of PSUs in Vi,h .
Also every PSU understood as a collection of secondary sampling units (SSUs) is

stratified: A PSU j from the stratum Vi,h is stratified into
⋃G j,h,i

g=1 Wi,h, j,g .

A sample S is chosen as follows: At the first stage, a PSU’s sample S(I )
i,h of size

mi,h is selected from Vi,h according to the SRSWOR, h = 1, . . . , Hi , i = 1, . . . , I .
At the second stage for each PSU j ∈ S(I )

i,h , an SSU’s sample S(I I )
i,h, j,g of size ni,h, j,g

is selected fromWi,h, j,g , according to the SRSWOR, g = 1, . . . ,Gi,h, j . Let Ni,h, j,g

denote the number of SSUs inWi,h, j,g . Finally, we set

S =
I⋃

i=1

Hi⋃

h=1

⋃

j∈S(I )
i,h

Gi,h, j⋃

g=1

S(I I )
i,h, j,g.

As an example, one can consider a survey of population of students in a given
country with parameters to be estimated at the regions level (subpopulations) and at
the whole country level as well. Then, SSUs are just students, while PSUs are schools.
Schools in each region are stratified into educational districts, and pupils in each school
are stratified into grades. That is, U is the population of students, Vi is subpopulation
of schools in i th region, while Vi,h is the stratum of schools in hth district of Vi

and Mi,h is the number of schools in Vi,h . Moreover, Wi,h, j,g denotes students of
grade g of j th school from district Vi,h and Ni,h, j,g denotes the number of students in

Wi,h, j,g . A sample S(I )
i,h of mi,h schools is drawn according to SRSWOR from Vi,h ,

and then a sample S(I I )
i,h, j,g of ni,h, j,g students is drawn by SRSWOR from Wi,h, j,g

for each school j belonging to S(I )
i,h . Here and below in the formulas for variances, a

single subscript i refers to region Vi , a double subscript i, h refers to district Vi,h , a
triple subscript i, h, j refers to j th school from district Vi,h and a quadruple subscript
i, h, j, g refers to grade g of j th school in district Vi,h .

The variance of π -estimator of the total of Y over subpopulation Ui has the form,
see, for example, Särndal et al. (1992, Ch. 4.3),

Hi∑

h=1

(
1

mi,h
− 1

Mi,h

)
M2

i,h D
2
i,h

+
Hi∑

h=1

Mi,h
mi,h

∑

j∈Vi,h

Gi,h, j∑

g=1

(
1

ni,h, j,g
− 1

Ni,h, j,g

)
N 2
i,h, j,gS

2
i,h, j,g,
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570 M. G. M. Khan, J. Wesołowski

where

D2
i,h = 1

Mi,h−1

∑

j∈Vi,h

(
t j − t̄i,h

)2

with

t j =
∑

k∈PSU ( j)

yk ∀ PSU( j), t̄i,h = 1
Mi,h

∑

j∈Vi,h

t j ;

and

S2i,h, j,g = 1
Ni,h, j,g−1

∑

k∈Wi,h, j,g

(
yk − t̄i,h, j,g

)2

with

t̄i,h, j,g = 1
Ni,h, j,g

∑

k∈Wi,h, j,g

yk .

The actual cost of the survey generated by the sample S can be modeled by the
quantity

I∑

i=1

Hi∑

h=1

mi,h

⎛

⎜
⎝c2I ,i,h +

∑

j∈S(I )
i,h

c2I I ,i,h, j

Gi,h, j∑

g=1

ni,h, j,g

⎞

⎟
⎠ ,

where c2I ,i,h > 0 and c2I I ,i,h, j > 0 are costs generated by a single PSU from hth
stratum of PSUs in i th domain (we assume that it is constant within the stratum) and
a single SSU from j th PSU of hth stratum of PSUs in i th domain (we assume that
it is constant within the PSU), respectively. Obviously, due to randomness of S(I )

i,h ,
the actual cost is a random variable. In such a situation, when one wants to impose
a constraint on the total cost, the standard approach is to impose a constraint on its
expected variable cost (EVC), see, for example, Ch. 12.8.1 of Särndal et al. (1992),
which in the case considered here assumes the form:

I∑

i=1

Hi∑

h=1

c2I ,i,hmi,h +
I∑

i=1

Hi∑

h=1

mi,h
Mi,h

∑

j∈Vi,h

c2I I ,i,h, j

Gi,h, j∑

g=1

ni,h, j,g = C . (9)

We also assume that priority weights (κi , i = 1, . . . , I ) ∈ (0, 1)I , such that∑I
i=1 κi = 1, for relative variances of estimators of means in subpopulations are

preassigned, that is
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Neyman-type sample allocation for domains-efficient… 571

Ti = 1
τ 2i

Hi∑

h=1

1
mi,h

⎛

⎝γ 2
i,h + Mi,h

∑

j∈Vi,h

Gi,h, j∑

g=1

β2
i,h, j,g

ni,h, j,g

⎞

⎠

−
∑Hi

h=1 Mi,h D2
i,h

τ 2i
= κi T , i = 1, . . . , I , (10)

where

γ 2
i,h = Mi,h

⎛

⎝Mi,h D
2
i,h −

∑

j∈Vi,h

Gi,h, j∑

g=1

Ni,h, j,g S
2
i,h, j,g

⎞

⎠

and

βi,h, j,g = Ni,h, j,g Si,h, j,g

for τi = ∑Hi
h=1

∑
j∈Vi,h

t j , i = 1, . . . , I . We wrote above γ 2
i,h since we will be

assuming that it is nonnegative.
Wewant to find the allocation that is a set of two tables: a two-way tablem = (mi,h)

and a four-way table n = (ni,h, j,g), which give minimal domain-wise relative vari-
ances Ti , i = 1, . . . , I and minimal relative overall variance S, under the constraints
(10) imposed through priority weights and the EVC constraint (9).

The result below says that it can be achieved by searching for positive eigenvalue of
a certain matrix based on population quantities and costs coefficients. The allocation
is obtained from the respective eigenvector. The approach parallels earlier develop-
ments in this setting where, instead of using a single total average cost constraint, the
first-stage and second-stage costs were treated separately. In particular, NW in 2001
considered a two-stage scheme with separate constraints for the size of PSUs and
SSUs sample and with stratified sampling either at the first or at the second stage. As
it has been alreadymentioned, a similar problem has been recently investigated inWW
for two-stage stratified SRSWOR on both stages as well as a scheme with stratified
Hartley–Rao scheme at the first stage and stratified SRSWOR at the second stage (also
some variations of theses two basic setups were considered there). In that paper, again
two constraints were jointly imposed: one for the cost incurred by the PSUs sample
size,

∑I
i=1

∑Hi
h=1mi,h = m, and one for the cost generated by the expected SSUs

sample size,
∑I

i=1
∑Hi

h=1
mi,h
Mi,h

∑
j∈Vi,h

∑Gi,h, j
g=1 ni,h, j,g = n (these formulas refer

obviously to the stratified SRSWOR on both stages). In meantime, the eigenproblem
approach has been further developed in a series of papers: Kozak (2004) (multivariate
version of NWwas considered with an application to agricultural surveys), Kozak and
Zieliński (2005) (the original eigenproblem approach fromNW,where it was assumed
that relative variances are the same for all domains, was adapted to include priority
weights for domains; also an application related to the real forestry survey was given).
Only single-stage schemes were considered in both these papers. In the context, we
consider here probably the most interesting is the paper (Kozak et al. 2008). These
authors were concerned with a two-stage sampling with stratification at the first stage
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572 M. G. M. Khan, J. Wesołowski

together with a single cost constraint similar to (9) and domains-related constraints
like (10). However, their approach was restricted to the case when SSU’s sample sizes
are the same for all PSU’s in a given stratum of a given domain. Also they did not
consider stratification at the second stage. The latter restriction does not seem to be as
serious as the former.

In our main result below, we use the notation introduced earlier in this section.

Theorem 2.1 Assume that Mi,h D2
i,h >

∑
j∈Vi,h

∑Gi,h, j
g=1 Ni,h, j,g S2i,h, j,g for all h =

1, . . . , Hi , i = 1, . . . , I . Let D = a aT

C − diag(c) where a = (ai , i = 1, . . . , I )T ,
c = (ci , i = 1, . . . , I ),

ai = νi
ρi

, with νi =
Hi∑

h=1

⎛

⎝cI ,i,hγi,h +
∑

j∈Vi,h

cI I ,i,h, j

Gi,h, j∑

g=1

βi,h, j,g

⎞

⎠ , ρi = τi
√

κi

and

ci = 1
ρ2
i

Hi∑

h=1

Mi,h D
2
i,h, i = 1, . . . , I .

Assume that D has a positive eigenvalue λ∗ with a respective eigenvector v∗ =
(v∗

1 , . . . , v
∗
I )

T .
Then, λ∗ is simple and unique and v∗ has all coordinates of the same sign.
The allocation which minimizes all relative variances in domains Ti , i = 1, . . . , I ,

(as well as the relative variance S in the whole population) under domain relative
variance constraints (10) and overall EVC constraint (9) is given by

mi,h = C
v∗
i γi,h

ρi cI ,i,h
∑I

r=1 v∗
r νr /ρr

(11)

and

ni,h, j,g = cI ,i,hMi,hβi,h, j,g
cI I ,i,h, jγi,h

. (12)

Moreover, the minimal relative variances in the domains are Ti = κi T , i = 1, . . . , I
and the overall relative variance is S = T

τ 2

∑I
i=1 κiτ

2
i with

T = λ∗ = 1
∑I

i=1 ρ2
i

⎡

⎣ 1
C

(
I∑

i=1

ρi
v∗
i

νi

)(
I∑

i=1

v∗
i

ρi
νi

)

−
I∑

i=1

Hi∑

h=1

Mi,h D
2
i,h

⎤

⎦ . (13)

Remark 2.1 Note that when the condition

d∑

i=1

a2i
ci

> C (14)
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is satisfied for amatrix of the formD = a aT

C +diag(c)withC > 0 and a, c ∈ (0,∞)d ,
then D has a positive eigenvalue (see Prop. 2.1 in WW). Note that in the framework
of Theorem 2.1, condition (14) assumes the form

d∑

i=1

ν2i
∑Hi

h=1 Mi,h D2
i,h

> C .

The above assumption aswell as the assumption that γ 2
i,h > 0 is related to convexity

of the function being minimized, and as such they are necessary also for the convex
NLP methods to provide the unique solution (see also Remark 2.3).

Remark 2.2 Note that the problem we solved in Theorem 2.1 can be formulated
equivalently as: Minimize the overall relative variance S under constraints (10) on
relative variances Ti in domains (i = 1, . . . , I ) and the expected overall cost con-
straint (9). The reason for validity of such a rephrasing of the original problem is that
S = T 1

τ 2

∑I
i=1 κiτ

2
i which is a consequence of Ti = κi T , i = 1, . . . , I .

Remark 2.3 The optimal allocation problem in two-stage sampling when no domains
efficiency is taken under account has thewell-knownNeyman-type solution. For exam-
ple, in case of no stratification on both stages, such solution under EVC constraint is
given in Ch. 12.8.1 of Särndal et al. (1992). Our formulas (11) and (12) reduce to
(12.8.13) and (12.8.14) of Särndal et al. (1992) in the case when I = 1, H1 = 1 and
G1,1, j = 1, that is when the whole population is a single domain, neither PSUs nor
SSUs within PSU are stratified. The optimal allocation in the case of single domain
with stratified SRSWOR for PSUs and SRSWOR for SSUs in every PSU from the
first-stage sample is considered in Saini and Kumar (2015). The authors provide the
NLP solution and then conclude that the same result can be obtained via Neyman-type
approach. Actually, they consider a p-variate case. However, their optimal allocation
formulas (16) and (17) for p = 1 are again special cases of (11) and (12). Note that
the assumption Ah > 0 needed also for the numerical solution in that paper is (again
for p = 1) in full agreement with γ 2

ih > 0, which we assume in Theorem 2.1.
In the case of the populationU consisting just of a single domain, i.e., when I = 1,

the eigenvector cancels out from (11) and formulas (11) and (12) for optimal allocation
are immediately reduced to (with the index i = 1 suppressed)

mh = C γh

cI ,h
∑H


=1

(

cI ,
γ
+∑
j∈V


cI I ,
, j
∑G
, j

g=1 β
, j,g

) and nh, j,g = cI ,h Mhβh, j,g
cI I ,h, jγh

.

Moreover, the optimal relative variance (13) assumes the form

D2
opt = 1

C

⎡

⎣
H∑

h=1

⎛

⎝cI ,hγh +
∑

j∈Vh

cI I ,h, j

Gh, j∑

g=1

βh, j,g

⎞

⎠

⎤

⎦

2

−
H∑

h=1

Mh D
2
h .
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Note that these formulas are exact versions of the Neyman optimal allocation and
the Neyman optimal variance for two-stage sampling with stratified SRSWOR at both
stages.

Remark 2.4 The allocation results given in Theorem 2.1 should be compared to the
domain-efficient allocation in the same stratified SRSWOR on both stages but with
separate constraints for the size of the first-stage sample and for the expected size of
the second-stage sample as given in Theorem 3.3 of WW. The basic difference is that
in the latter paper both mi,h and ni,h, j,g depend on the eigenvector v∗, while in the
above result the eigenvector appears only in formula (11) for mi,h and formula (12) is
free from v∗. This is the major, and by no means obvious, structural consequence of
the fact that the constraint we consider here is imposed on the expected costs of the
first and the second stage jointly.

Proof of Theorem 2.1 Note that since κi , i = 1, . . . , I , are fixed and known, minimiz-
ing relative variances Ti = Ti (m, n), i = 1, . . . , I , is equivalent to minimize T under
constraints (9) and (10). Therefore, the Lagrange function has the form

F(T ,m, n) = T +
I∑

i=1

λi

(
Ti (m,n)

κi
− T

)

+μ

⎛

⎝
I∑

i=1

c2I ,i,h

Hi∑

h=1

mi,h +
J∑

j=1

Hj∑

h=1

m j,h
M j,h

∑

i∈W j,h

c2I I ,i,h, j

G j,h,i∑

g=1

n j,h,i,g

⎞

⎠ .

Note that

∂ F
∂ ni,h, j,g

= − λi Mi,hβ
2
i,h, j,g

ρ2
i mi,hn2i,h, j,g

+ μ
mi,h
Mi,h

c2I I ,i,h, j = 0.

Consequently, λi > 0 and

mi,hni,h, j,g =
√

λi Mi,hβi,h, j,g
cI I ,i,h, jρi

√
μ

. (15)

Moreover,

∂ F
∂ mi,h

= − λi
m2
i,hρ

2
i

⎛

⎝γ 2
i,h + Mi,h

∑

j∈Vi,h

Gi,h, j∑

g=1

βi,h, j,g
ni,h, j,g

⎞

⎠

+μ

⎛

⎝c2I ,i,h + 1
Mi,h

∑

j∈Vi,h

c2I I ,i,h, j

Gi,h, j∑

g=1

ni,h, j,g

⎞

⎠ = 0.
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The above after multiplication by mi,h can alternatively be written as

− λiγ
2
i,h

mi,hρ
2
i

− λi Mi,h

ρ2
i

∑

j∈Vi,h

Gi,h, j∑

g=1

β2
i,h, j,g

mi,hni,h, j,g

+μ c2I ,i,hmi,h + μ 1
Mi,h

∑

j∈Vi,h

c2I I ,i,h, j

Gi,h, j∑

g=1

mi,hni,h, j,g = 0.

Note that due to (15), the second and fourth terms above cancel out and thus

mi,h =
√

λiγi,h
cI ,i,h ρi

√
μ
. (16)

Now (12) follows by combining (16) with (15).
To find mi,h , we plug (15) and (16) into the cost constraint (9) and obtain

√
μ = 1

C

I∑

i=1

√
λi

ρi
νi (17)

Now let us insert (15) and (16) in the constraint (10). It leads to the equation

Hi∑

h=1

γ 2
i,h cI ,i,h

√
μ√

λiγi,h
+

Hi∑

h=1

Mi,h

∑

j∈Vi,h

Gi,h, j∑

g=1

β2
i,h, j,g cI I ,i,h, j

√
μ√

λi Mi,hβi,h, j,g
− 1

ρi

Hi∑

h=1

Mi,h D
2
i,h = ρi T .

Multiply its both sides by vi := √
λi , divide by ρi and rewrite as

√
μ

νi
ρi

− civi = T vi .

Expanding now
√

μ according to (17), we obtain

C−1 νi
ρi

I∑

r=1

vr νr
ρr

− civi = T vi ,

which is valid for any i = 1, . . . , I . Note that in terms of the vector a defined in the
formulation of the theorem, the above can be rewritten as

ai aT

C v − civi = T vi , i = 1, . . . , I ,

or equivalently
(
a aT

C − diag(c)
)

v = T v.

The final part of the proof follows closely the argument given inWWand is recalled
here just for the readers’ convenience.
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Consider now the matrix D and let λ∗ be its positive eigenvalue. To show that it is
simple, unique and the eigenvector v∗ attached to this eigenvalue has all coordinates of
the same sign, we use the celebrated Perron–Frobenius theorem: If A is a matrix with
all strictly positive entries, then there exists a unique positive eigenvalue ν of A; it is
simple and such that ν > |λ| for anyother eigenvalueλofA. The respective eigenvector
(attached to ν ) has all entries strictly positive (up to scalar multiplication)—see, for
example, Kato (1981, Th. 7.3 in Ch. 1).

Fix a number ρ > max1≤i≤I ci > 0. The matrix D + ρI, where I is the identity
matrix, has all entries strictly positive. For any eigenvalue δ j of D and respective
eigenvector w j

(D + ρI)w j = (δ j + ρ)w j , j = 1, . . . , I .

That is δ j + ρ and w j , j = 1, . . . , d, are respective eigenvalues and eigenvectors
of the matrix D + ρI. By the Perron–Frobenius theorem, there exists j0 such that
δ j0 + ρ j ≥ |δ j + ρ| for any j = 1, . . . , I and respective eigenvector w j0 has all
entries of the same sign. Consequently, δ j0 + ρ j ≥ δ j + ρ, and thus δ j0 ≥ δ j for
any j = 1, . . . , I . Therefore, by assumption that λ∗ is the unique positive eigenvalue
of D, it follows that T = λ∗ = δ j0 and the respective eigenvector v∗ = w j0 has all
entries of the same sign.

Now formulas (11) and (12) follow directly from (16) and (15). 
�
Remark 2.5 Of course, as always when such allocation problems are solved without
the natural box constraints: mi,h ≤ Mi,h and ni,h, j,g ≤ Ni,h, j,g (and this is the
case of eigenproblem approach), the solution may violate some of them. Then, it is
standard to set mi,h = Mi,h and ni,h, j,g = Ni,h, j,g in all instances of violation of
the respective box constraint and then repeat the minimization procedure for reduced
population and reduced cost constraint. It may produce solutionswhich are not optimal
(though, typically, close to them). On the other hand, it is known, for example, in the
case of the problem of optimal allocation in stratified SRSWOR that it is possible to
reduce the population since the optimal solution requires to take nh = Nh in some
strata. Then, minimization can be performed on such reduced population—see, for
example, Lemma1 in Stenger andGabler (2005). This approach has been developed by
introducing box constraints to the numerical procedure of optimal allocation in Gabler
et al. (2012); computational aspects of such procedures are analyzed in Münnich et al.
(2012) (with further references given in that paper).

We do not consider here also exact optimality with respect to integer solutions. In
this context, it is worth to mention again stratified SRSWOR for which an integer-
valued optimal allocation has been recently given in Wright (2017) and, another one,
even earlier by Friedrich et al. (2015). Here, we are fully satisfied with, for example,
random rounding of non-integer allocation, which typically gives solutions close to
optimal.
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3 Special cases

3.1 Stratification only at the first stage

This is probably the most popular of the two-stage schemes used in practice. In this
case, we have Gi,h, j = 1 for any (i, h, j) and thus it allows for a considerable
simplification of the notation used in Sect. 2. The constraints imposed by priority
weights for relative variances in domains assume the form

Ti = 1
τ 2i

Hi∑

h=1

1
mi,h

⎛

⎝γ 2
i,h + Mi,h

∑

j∈Vi,h

β2
i,h, j

ni,h, j

⎞

⎠

− 1
τ 2i

Hi∑

h=1

Mi,h D
2
i,h = κi T , i = 1, . . . , I ,

where

γ 2
i,h = Mi,h

⎛

⎝Mi,h D
2
i,h −

∑

j∈Vi,h

Ni,h, j S
2
i,h, j

⎞

⎠ , βi,h, j = Ni,h, j Si,h, j

and in j th PSU from Vi,h : The number of SSUs is Ni,h, j , the population variance
among SSUs is S2i,h, j and the sample size is ni,h, j . Here, D2

i,h and Mi,h have the same
definition as in Sect. 2.

The cost constraint (9) changes to

I∑

i=1

Hi∑

h=1

c2I ,i,hmi,h +
I∑

i=1

Hi∑

h=1

mi,h
Mi,h

∑

j∈Vi,h

c2I I ,i,h, j ni,h, j = C

From Theorem 2.1 [if its assumptions, in particular the respective version of (14),
are satisfied], we conclude that the optimal allocation at the first stage is:

mi,h =C
v∗
i γi,h

ρi c2I ,i,h
∑I

r=1 v∗
r νr /ρr

where νr =
Hr∑

s=1

⎛

⎝cI ,r ,sγr ,s+
∑

t∈Vr ,s

cI I ,r ,s,t βr ,s,t

⎞

⎠ ,

(18)

v∗ is the eigenvector (with positive components) of the matrix D = aaT

C − diag(c)
with

ai = νi
ρi

, ci = 1
ρ2
i

Hi∑

h=1

Mi,h D
2
i,h, (19)
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and the optimal allocation at the second stage is

ni,h, j = cI ,i,hMi,hβi,h, j
cI I ,i,h, j γi,h

. (20)

Due to its important role in practice, we chose this setting for presenting the core part
of an R-code which produces the domain-efficient allocation. Assume that vectors
a:= a and c:= c have already been computed according to (19) and that the vector
of priority weights (κi , i = 1, . . . , I ) is denoted by kap. Then, to find the respective
eigenvector, one may use the following code in R (function eigen being its essence)

if (nrow(c)>1) D.matrix<-a%*%t(a) - diag(c$c)
else D.matrix<-a%*%t(a) - c$c

eig<-eigen(D.matrix) # must be unique positive
eigenvalue

lambda<-eig$values
lambda<-lambda[lambda>0]

if (length(lambda)>1)
stop("Positive eigenvalue is not unique - solution

does not exist !")

opt<-eig$values[1] # maximum eigenvalue; since sorted
in decreasing order

cat("for domain = ",i," CV optimal (in %) = ",100*sqrt
(kap[i]*opt[i]),"\n")

v<-(-meig$vectors[,1]) # corresponding eigenvector

After computing the eigenvector v := v as given in the last line of the R-code
above, one can calculate the optimal sample sizes mi,h and ni,h, j according to (18)
and (20), respectively.

The R-code given above was adapted from the full R-code as given in https://
github.com/rwieczor/eigenproblem_sample_allocation, which was created (in con-
nectionwithWW) for optimal fixedprecision allocation in subpopulations in two-stage
sampling with the stratified Hartley–Rao πps scheme at the first stage and SRSWOR
at the second stage and with constraints imposed separately on the size of the sample
at the first and on the expected size of the sample at the second stage.

3.2 Stratification only at the second stage

Here, we have Hi = 1 for any i . It allows to also simplify the notation of Sect. 2. The
constraints imposed by priority weights for relative variances in domains assume the
form

Ti = 1
mi τ

2
i

⎛

⎝γ 2
i + Mi

∑

j∈Vi

Gi, j∑

g=1

β2
i, j,g

ni, j,g

⎞

⎠ − 1
τ 2i
Mi D

2
i = κi T , i = 1, . . . , I ,
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where

βi, j,g = Ni, j,gSi, j,g, D2
i = 1

Mi−1

∑

j∈Vi

(
t j − t̄i

)2
.

and Ni, j,g is number of SSUs, S2i, j,g is the population variance among SSUs and
ni, j,g is the sample size, in gth SSU stratum of j th PSU from Vi . Moreover, Gi, j is
the number of SSUs strata in j th PSU from Vi , Mi = #(Vi ) and

γ 2
i = Mi

⎛

⎝Mi D
2
i −

∑

j∈Vi

Gi, j∑

g=1

Ni, j,g S
2
i, j,g

⎞

⎠ .

Here, the version of the cost constraint (9) is

I∑

i=1

c2I ,i mi +
I∑

i=1

mi
Mi

∑

j∈Vi

c2I I ,i, j

Gi, j∑

g=1

ni, j,g = C .

From Theorem 2.1 (if its assumptions are satisfied), it follows that the optimal
allocation at the first stage is

mi = C
v∗
i γi

ρi cI ,i
∑I

r=1 v∗
r νr /ρr

, where νr = cI ,rγr +
∑

t∈Vr

cI I ,r ,t

Gr ,t∑

u=1

βr ,t,u,

v∗ is the eigenvector (having all components positive) of thematrixD = a aT

C −diag(c)
with

ai = νi
ρi

, ci = Mi D2
i

ρ2
i

,

and the optimal allocation at the second stage is

ni, j,g = cI ,i Miβi, j,g
cI I ,i, jγi

.

3.3 No stratification at stage one and two

That is, we assume Hi = 1 and Gi,h, j = 1 for any (i, h, j). In this case, the for-
mulas are further simplified. The constraints imposed by priority weights for relative
variances in domains assume the form

Ti = 1
τ 2i mi

⎛

⎝γ 2
i + Mi

∑

j∈Vi

β2
i, j

ni, j

⎞

⎠ − 1
τ 2i

Mi D
2
i = κi T , i = 1, . . . , I ,

123



580 M. G. M. Khan, J. Wesołowski

where

βi, j = Ni, j Si, j

and Ni, j is number of SSUs, S2i, j is the population variance among SSUs and ni, j is
the sample size, in j th PSU from Vi . Moreover,

γ 2
i = Mi

⎛

⎝Mi D
2
i −

∑

j∈Vi

Ni, j, S
2
i, j

⎞

⎠

with Mi and Di defined as in Sect. 3.2. The cost constraint (9) assumes a simple form

I∑

i=1

c2I ,i mi +
I∑

i=1

mi
Mi

∑

j∈Vi

c2I I ,i, j ni, j = C .

From Theorem 2.1 (if its assumptions are satisfied), we conclude that the optimal
allocation at the first stage is

mi = C
v∗
i γi

ρi cI ,i
∑I

r=1 v∗
r νr /ρr

, where νr = cI ,rγr +
∑

t∈Vr

cI I ,r ,t βr ,t ,

v∗ is the eigenvector (having all components positive) of thematrixD = a aT

C −diag(c)
with

ai = νi√
κi

,

c defined as in Sect. 3.2 and the optimal allocation at the second stage is

ni, j = cI ,i Miβi, j
cI I ,i, j γi

.

4 Two-stage sampling with pps sampling

4.1 pps Sampling at the first stage and SRSWOR at the second stage

Wedraw the PSUs ordered sampleS(I ) = (K1, . . . , Km) using pps sampling,meaning
that PSUs are drawn m times with replacement (that is, independently), j th with
probability p j which is proportional to its size, j ∈ V (population of PSUs). Then,
if j th PSU belongs to S(I ), we draw (by SRSWOR) from it a sample (of size n j )

of SSUs, obtaining in this way the sample S(I I )
j , j ∈ S(I ). Such sampling scheme is

considered in Ch. 4.5 of Särndal et al. (1992) (in particular, in Result 4.5.1 the unbiased
estimator and its variance are given). A population-efficient allocation procedure for
this setup has been given recently in Valliant et al. (2015) as one of the options in the
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PracTools R package. Importance of this scheme is due to the fact that when the sample
of PSUs is sufficiently small, sampling with or without replacement gives the same
results. Consequently, very often in practice, the first-stage variance in πps without
replacement sampling is approximated by its pps version. It appears that in such case
the eigenproblem methodology we develop here allows for a closed analytic formula
for the eigenvector responsible for the domains-efficient allocation. It follows from the
fact that the respective population matrix is of rank one. The details are given below.

The unbiased estimator of the population total τ = ∑
k∈U yk is

τ̂ = 1
m

m∑

r=1

t̂Kr
pKr

,

where t̂ j = 1
n j

∑
k∈S(I I )

j
yk for any PSU j . Its variance has the form

D2(τ̂ ) = 1
m

∑

j∈V
p j

(
t j
p j

− τ
)2 + 1

m

∑

j∈V

D2
j

p j
,

where for any j ∈ V we denote

t j =
∑

k∈PSU ( j)

yk, D2
j =N 2

j

(
1
n j

− 1
N j

)
S2j , S2j = 1

N j−1

∑

k∈PSU ( j)

(
yk − t j

N j

)2
.

To obtain the optimal allocation of the sample at the first and at the second stage in
the domains with given priority weights κi , i = 1, . . . , I , we need to minimize

Ti = 1
τ 2i

⎛

⎝ 1
mi

∑

j∈Vi

pi, j
(

ti, j
pi, j

− τi

)2 + 1
mi

∑

j∈Vi

D2
i, j

pi, j

⎞

⎠ , i = 1, . . . , I ,

under the constraints given by the priority weights Ti = κi T and the EVC constraint

I∑

i=1

⎛

⎝mic
2
I ,i + mi

∑

j∈Vi

c2I I ,i, j pi, j ni, j

⎞

⎠ = C, (21)

where C is the total expected cost of the survey, cI ,i is the cost incurred by a PSU
from Vi (assumed to be constant within the domain) and cI I ,i, j is the cost incurred by
a SSU belonging to the j th PSU from the i th domain.

This setting is somewhat different, actually, simpler than considered earlier. It is
due to the fact that in the expression for Ti all summands are multiplied by 1/mi .

Theorem 4.1 Assume that for any i = 1, . . . , I

∑

j∈Vi

[

pi, j
(

ti, j
pi, j

− τi

)2 − Ni, j S2i, j
pi, j

]

> 0.
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Then, the allocation minimizing Ti = κi T , i = 1, . . . , I , (as well as the relative
variance S in the whole population) under the cost constraint (21) has the form

mi = C
Ai

(
cI ,i Ai+∑

j∈Vi cI I ,i, j Bi, j
√
pi, j

)

cI ,i
∑I

r=1 cI ,r Ar+∑
s∈Vr cI I ,r ,s Br ,s

√
pr ,s

, i = 1, . . . , I ,

and

ni, j = cI ,i Bi, j
Ai ,cI I ,i, j

√
pi, j

, j ∈ Vi , i = 1, . . . , I ,

where

A2
i = 1

τ 2i κi

∑

j∈Vi

[

pi, j
(

ti, j
pi, j

− ti
)2 − Ni, j S2i, j

pi, j

]

, and B2
i, j = N2

i, j S
2
i, j

pi, j
.

Proof Similarly, as in the proof of Theorem 2.1, we consider the Lagrange function

F(T , (mi ), (ni, j ); (λi ), μ) = T +
I∑

i=1

λi

⎛

⎝ A2
i

mi
+

∑

j∈Vi

B2
i, j

mi ni, j
− T

⎞

⎠

+μ

I∑

i=1

mi

⎛

⎝c2I ,i +
∑

j∈Vi

c2I I ,i, j pi, j ni, j

⎞

⎠

Again, following the steps of the proof of Theorem 2.1, we arrive at

mini, j =
√

λi Bi, j√
μ cI I ,i, j

√
pi, j

and mi =
√

λi Ai√
μcI ,i

. (22)

Thus, the formula for ni, j follows.
Inserting both expressions from (22) into the cost constraints, we obtain

√
μ = aT v

C ,

where

a = (a1, . . . , aI )
T with ai = cI ,i Ai +

∑

j∈Vi

cI I ,i, j Bi, j
√
pi, j

and v = (v1, . . . , vI ) with vi = √
λi .

On the other hand, plugging formulas (22) into the constraints Ti = κi T , we get

T vi = √
μC ai = aT v ai , i = 1, . . . , I ,
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which is equivalent to

1
C a aT v = T v.

That is, v is an eigenvector of the matrix D = 1
C a a

T associated with eigenvalue T .
Since the matrixD is semi-positive definite of rank 1, the number T is its only nonzero
simple positive eigenvalue. Moreover, note that v∗ := √

Ca is the eigenvector of D
associated with eigenvalue ‖a‖2/C . Finally, from (22), we obtain

mi = C ai Ai
cI ,i ‖a‖2 and ni, j = cI ,i Bi, j

Ai cI I ,i, j
√
pi, j

, j ∈ Vi , i = 1, . . . , I .


�

4.2 SRSWOR at the first stage and pps sampling at the second stage

For completeness of the picture for two-stage sampling involving pps approach, let
us consider the situation when the PSUs sample S(I ) is drawn through SRSWOR and
the SSUs sample by sampling with replacement with probabilities pk proportional to
the size of kth unit. Here, the simplification of Sect. 4.1 is no longer available. This
case falls under the general framework developed in Sect. 3.3.

The standard estimator of the total is

t̂ = M
m

∑

j∈S(I )

1
n j

n j∑


=1

yK j,

pK j,


,

where m is the number of PSUs drawn by the SRSWOR from the total of M PSUs
in the population, n j is the number of “with-replacement” draws from j th PSU, K j,


is the SSU drawn from j th PSU in the 
th draw (with replacement), j ∈ V (PSUs
population of size M). Evidently, t̂ is unbiased for the population total. Its variance is

D2(t̂) = M2 ( 1
m − 1

M

)
S2I + M

m

∑

j∈V
1
n j
D2

I I , j ,

where

S2I = 1
M−1

∑

j∈V

(
t j − t̄

)2
, t̄ = 1

M

∑

j∈V
t j ,

and for any j ∈ V

t j =
∑

k∈PSU j

yk, D2
I I , j =

∑

k∈PSU j

(
yk
pk

− t j
)2

pk .
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Consequently, to obtain the optimal allocation of the samples (on the first and
second stage) in the domains with given priority weights κi , i = 1, . . . , I , we need to
minimize

Ti = 1
τ 2i

⎛

⎝M2
i S

2
I ,i

mi
+ Mi

mi

∑

j∈Vi

1
ni, j

D2
I I ,i, j − Mi S

2
I ,i

⎞

⎠ , i = 1, . . . , I ,

under the constraints given by the priority weights Ti = κi T and the expected cost
constraint

I∑

i=1

⎛

⎝c2I ,imi + mi
Mi

∑

j∈Vi

c2I I ,i, j ni, j

⎞

⎠ = C,

where C is the total expected cost of the survey, cI ,i is the cost incurred by a PSU
from Vi (assumed to be constant within the domain) and cI I ,i, j is the cost incurred by
a SSU belonging to the j th PSU from the i th domain.

Since the structure of the problem is exactly the same as for the one considered in
Sect. 3.3, we conclude that the optimal allocation has the form

mi = C
v∗
i γi

√
κi cI ,i

∑I
r=1 v∗

r
1√
κr

(
cI ,rγr+∑

t∈Vr cI I ,r ,t βr ,t
) , i = 1, . . . , I ,

and

ni, j = C Mi
mi

v∗
i βi, j

√
κi cI I ,i, j

∑I
r=1 v∗

r
1√
κr

(
cI ,r γr+∑

t∈Vr cI I ,r ,t βr ,t
) , j ∈ Vi , i = 1, . . . , I ,

where

γ 2
i = Mi S2I ,i

τ 2i
, β2

i, j = D2
I I ,i, j

τ 2i

and v∗ is the eigenvector (having all components of the same sign) of the matrix

D = aaT

C − diag(c) with components of a of the form

ai = cI ,iγi +∑
j∈Vi

cI I ,i, j βi, j√
κi

, and ci = Mi S2I ,i
τ 2i

, i = 1, . . . , I .

5 Three-stage sampling without stratification

In multistage sampling, typically, we do not go beyond three-stage sampling. This
scheme is described in detail, for example, in Särndal et al. (1992, Ch. 4.4.2). The
optimal allocation of the sample between three stages under the cost constraints,
with the additional simplifying assumption that the sizes of SSU and TSU (tertiary
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sampling unit) samples do not depend on PSU or SSU, respectively, had been studied
already in Cochran (1977, Ch. 10.8) (see also Singh 2003, Ch. 10.4). Recently, the
optimal allocation procedure, using a simplified variance formula with the standard
constraints regarding the total costs, was designed in Valliant et al. (2015) as a part
of their PracTools R package. An application of such a simple three-stage sampling
design is given, for example, in Tate and Hudgens (2007).

In this section, we analyze the eigenproblem approach to the domain-efficient allo-
cation of sample in three-stage sampling, but first we recall the Neyman-type optimal
allocation in the case of no domains.

It is well known that the variance of the standard estimator t̂ of the total of a variable
Y in a population U under three-stage sampling with SRSWOR on every stage has
the form

D2 = ( 1



− 1
L

)
L2S2I + L




L∑

j=1

(
1
m j

− 1
Mj

)
M2

j S
2
I I , j

+ L



L∑

j=1

Mj
m j

M j∑

k=1

(
1

n j,k
− 1

N j,k

)
N 2

j,k S
2
I I I , j,k,

where L and 
 denote the number of PSUs, Mj and m j the number of SSUs in the
j th PSU, N j,k and n j,k the number of TSUs in ( j, k)th SSU, in population and in
the sample, respectively; moreover, S2I , S

2
I I , j , S

2
I I I , j,k denote population variances for

PSUs in U , SSUs in j th PSU and TSUs in ( j, k)th SSU.
Then, the minimization of D2 (or D2/τ 2) under the cost constraints

c2I 
 + 

L

L∑

j=1

c2I I , jm j + 

L

L∑

j=1

m j
M j

M j∑

k=1

c2I I I , j,kn j,k = C, (23)

where c2I , c
2
I I , j and c2I I I , j,k are costs generated by each PSU, each SSU belonging

to j th PSU and each TSU belonging to kth TSU from j th PSU of i th subpopulation,
while C denotes the overall cost of the survey, obtained through the standard Neyman
approach leads to the following optimal allocation solution


 = Cγ

cI

(

cI γ+∑L
j=1

(

cI I , jβ j+∑M j
k=1 cI I I , j,kδ j,k

)) , (24)

where γ 2 = L(LS2I − ∑L
j=1 Mj S2I I , j ) is assumed to be positive,

m j = cI Lβ j
cI I , jγ

, j = 1, . . . , L, (25)

where β2
j = Mj

(
Mj S2I I , j − ∑ j

k=1 N j,k S2I I I , j,k

)
is also assumed to be positive, and

n j,k = cI I , j M j δ j,k
cI I I , j,kβ j

, k = 1 . . . , Mj , j = 1, . . . , L, (26)
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where δ2j,k = N 2
j,k S

2
I I I , j,k . The optimal variance assumes the form

D2
opt = 1

C

⎛

⎝cIγ +
L∑

j=1

⎛

⎝cI I , jβ j +
Mj∑

k=1

cI I I , j,kδ j,k

⎞

⎠

⎞

⎠

2

− LS2I . (27)

Since we will be considering three-stage sampling in subpopulations, all these quan-
tities will be related to a subpopulation by additional subscript i = 1, . . . , I .

Similarly, as in previous sections, we will be interested in minimization of relative
variances in subpopulations, provided they satisfy the constraints defined by priority
weights (κi , i = 1, . . . , I ), which assume the form

(
1

i

− 1
Li

)
L2
i S

2
I ,i+

Li

i

∑Li
j=1

(
1

mi, j
− 1

Mi, j

)

M2
i, j S

2
I I ,i, j+

Li

i

∑Li
j=1

Mi, j
mi, j

∑Mi, j
k=1

(
1

ni, j,k
− 1

Ni, j,k

)

N2
i, j,k S

2
I I I ,i, j,k

τ 2i

= κi T (28)

where T is unknown and has to be minimized under an additional total EVC constraint
which in the case of three-stage sampling assumes the form

I∑

i=1

c2I ,i
i +
I∑

i=1


i
Li

Li∑

j=1

c2I I ,i, jmi, j +
I∑

i=1


i
Li

Li∑

j=1

mi, j
Mi, j

Mi, j∑

k=1

c2I I I ,i, j,kni, j,k = C,

(29)

where c2I ,i , c
2
I I ,i, j and c

2
I I I ,i, j,k are costs generated by each PSU from i th subpopula-

tion, each SSU belonging to j th PSU of i th subpopulation and, each TSU belonging
to kth TSU from j th PSU of i th subpopulation, while C denotes the overall cost of
the survey.

Therefore, the Lagrange function, up to a constant shift, is of a rather complicated,
though regular form:

F(T , 
,m, n) = T +
I∑

i=1

λi
τ 2i

⎛

⎜
⎜
⎜
⎜
⎝

γ 2
i +Li

∑Li
j=1

β2
i, j+Mi, j

∑Mi, j
k=1

δ2i, j,k
ni, j,k

mi, j
κi 
i

− T

⎞

⎟
⎟
⎟
⎟
⎠

+μ

⎛

⎝
I∑

i=1


i

⎛

⎝c2I ,i + 1
Li

Li∑

j=1

mi, j

⎛

⎝c2I I ,i, j + 1
Mi, j

Mi, j∑

k=1

c2I I I ,i, j,kni, j,k

⎞

⎠

⎞

⎠

⎞

⎠ ,
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where

γ 2
i = Li

⎛

⎝Li S
2
I ,i −

Li∑

j=1

Mi, j S
2
I I ,i, j

⎞

⎠ ,

β2
i, j = Mi, j

⎛

⎝Mi, j S
2
I I ,i, j −

Mi, j∑

k=1

Ni, j,k S
2
I I I ,i, j,k

⎞

⎠ and δ2i, j,k = N 2
i, j,k S

2
I I I ,i, j,k .

Denoting ρi = τ 2
√

κi and differentiating F with respect to:

1. 
i we get

− λi
ρ2
i 
2i

⎛

⎝γ 2
i + Li

Li∑

j=1

1
mi, j

⎛

⎝β2
i, j + Mi, j

Mi, j∑

k=1

δ2i, j,k
ni, j,k

⎞

⎠

⎞

⎠

+μ

⎛

⎝c2I ,i + 1
Li

Li∑

j=1

mi, j

⎛

⎝c2I I ,i, j + 1
Mi, j

Mi, j∑

k=1

c2I I I ,i, j,kni, j,k

⎞

⎠

⎞

⎠ = 0, (30)

2. mi, j we get

− λi Li
ρ2
i 
i m2

i, j

⎛

⎝β2
i, j + Mi, j

Mi, j∑

k=1

δ2i, j,k
ni, j,k

⎞

⎠

+μ

i
Li

⎛

⎝c2I I ,i, j + 1
Mi, j

Mi, j∑

k=1

c2I I I ,i, j,kni, j,k

⎞

⎠ = 0, (31)

3. ni, j,k we get

− λi Li Mi, j

ρ2
i 
i mi, j n2i, j,k

δ2i, j,k + μ

i
Li

mi, j
Mi, j

c2I I I ,i, j,k = 0. (32)

Note that from (32), we get


imi, j ni, j,k =
√

λi Li Mi, j δi, j,k√
μ

√
κi cI I I ,i, j,k

. (33)

Multiply now (32) by ni, j,k/mi, j and insert it into (31). After cancellations, one gets


imi, j =
√

λi Liβi, j√
μ

√
κi cI I ,i, j

. (34)

Now multiply (31) by mi, j/
i and insert both into (30). After cancellations, one gets


i =
√

λiγi√
μ

√
κi cI ,i

. (35)
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Formulas for ni, j,k and mi, j follow directly from (33) and (34) and from (34) and
(35), respectively.

After inserting (33), (34) and (35) into (29), we obtain

√
μ = 1

c

I∑

i=1

√
λi

cI ,iγi+∑Li
j=1

(

cI I ,i, jβi, j+∑Mi, j
k=1 cI I I ,i, j,kδi, j,k

)

√
κi

. (36)

On the other hand, if we plug (33), (34) and (35) into the constraint (28), we obtain

√
μ

√
κi cI ,i γi√
λi

+ Li

Li∑

j=1

⎛

⎝
√

μ
√

κi cI I ,i, j βi, j√
λi Li

+ Mi, j

Mi, j∑

k=1

√
μ

√
κi cI I I ,i, j,k δi, j,k√
λi Li Mi, j

⎞

⎠

− Li S2I ,i
κi τ

2
i

= κi T .

Denote vi = √
λi and multiply the above equation by vi/κi . Then, after cancellations

and upon denoting

νi = cI ,i γi +
Li∑

j=1

⎛

⎝cI I ,i, j βi, j +
Mi, j∑

k=1

cI I I ,i, j,k δi, j,k

⎞

⎠

we have

√
μ

νi√
κi

− civi = T vi ,

where ci = Li S2I ,i
κi τ

2
i
, i = 1, . . . , I . Expanding now

√
μ according to (36), we conclude

that

aaT

C v − diag(c)v = T v,

where a = (ai , i = 1, . . . , I )T with

ai = νi√
κi

, i = 1, . . . , I ,

and c = (ci , i = 1, . . . , I ). Consequently, for D = aaT

C − diag(c) we have Dv = T v.

Theorem 5.1 Assume that

Li S
2
I ,i −

Li∑

j=1

Mi, j S
2
I I ,i, j > 0, i = 1, . . . , I ,
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and

Mi, j S
2
I I ,i, j −

Mi, j∑

k=1

Ni, j,k S
2
I I I ,i, j,k > 0, j = 1, . . . , Li , i = 1, . . . , I .

Assume that the matrix D has a positive eigenvalue λ∗. Then, it is unique and simple
and the respective eigenvector v∗ has all coordinates of the same sign.

The allocation 
, m and n which minimizes all relative domain-wise variances Ti ,
i = 1, . . . , I , (as well as the relative variance S in the whole population) under the
constraints Ti = κi T , i = 1, . . . , I , and under the EVC constraint (29) has the form


i = C
v∗
i γi

√
κi cI ,i

∑I
r=1 v∗

r
1√
κr

νr
, (37)

mi, j = cI ,i Liβi, j
γi cI I ,i, j

(38)

and

ni, j,k = cI I ,i, j Mi, j δi, j,k
βi, j cI I I ,i, j,k

(39)

for any k = 1, . . . , Mi, j , j = 1, . . . , Li , i = 1, . . . , I .
Moreover, the minimal relative variances in the domains are Ti = κi , T , i =

1, . . . , I , where T the base of the relative variance has the form

T = λ∗ = 1
C

(
I∑

i=1

νi τi
√

κi
v∗
i

) (
I∑

i=1

νiv
∗
i

τi
√

κi

)

−
I∑

i=1

Li S
2
I ,i . (40)

Remark 5.1 Note that in the case of no domains, i.e., when I = 1, the allocation
formulas (37)–(39) as well as the formula for the optimal variance (40) are simplified
to the Neyman-type allocation and optimal variance formulas as given in (24)–(26)
and (27), respectively.

Note also that only the allocation of the first-stage sample and the optimal base of
the variance depend on the eigenvector v∗. Formulas (38) and (39) for the allocation of
the second- and third-stage samples are given directly in terms of population quantities
with no reference to the eigenvector v∗.

6 Conclusions

In this paper, we search for Neyman-type solutions to domains-efficient allocation in
multistage stratified sampling. Such a solution can be seen as an alternative to the
purely numerical one proposed in CRH for stratified single-stage scheme. We develop
the eigenproblem method originating in NW and use eigenvalues and eigenvectors
for allocation which, under specified priority coefficients for the constraints on the
domains relative variances, assures optimal estimation both in the whole population
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and in the domains. In particular, we consider two- and three-stage sampling. The
novelty of the solutions we provide here, with respect to what is known for eigenprob-
lem approach to domains-efficient allocation, is with respect to several aspects. The
most important is that, in contrast to earlier situations, as, for example, inWW, a single
total cost constraint is taken under account. In previous papers instead, two constraints
related to (expected) samples sizes of the PSUs and SSUs, respectively, were jointly
imposed. In those papers, the two-stage sampling with SRSWOR (or Hartley–Rao)
schemes with stratification either at the first or the second stage was considered. Here,
we apply the eigenproblem methodology also to new sampling schemes: stratified
SRSWOR at both stages as well as pps sampling with replacement and SRSWOR
either at the first or the second stage and to the three-stage sampling with SRSWOR
at each stage. In each of these cases, the allocation which assures optimality (under
given domain priority weights) of estimators of domain totals is given in terms of
eigenvectors of a population-dependent matrix (which typically is rank-one pertur-
bations of a diagonal matrix). Moreover, the standard errors of the estimates in the
domains and in the whole population are given in terms of the respective eigenvalue.
The latter allows to interpret the solution as a direct generalization of Neyman-type
optimal allocation to the multi-domain case. Another important consequence of the
approach we use here is that through the analytic formulas, we obtained, the structure
of the optimal allocation can be seen. For example, it is visible that only the first-stage
optimal allocation is influenced by the eigenvector v∗ of the population matrix D.
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7 Appendix

Here, we compare the optimal multi-domain allocation obtained by Neyman-type
approach to minimization of the weighted L2-norm for the vector of relative variances
of domains

I∑

i=1

wi Ti

with the eigenproblem approach to minimization of relative domain variances with
priority weights

Ti = κi T , i = 1, . . . , I .

We consider only the easiest situation of stratified SRSWOR in domains.
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The numerical example is based on data from the survey of “Turnover in the Trade
Sector in Poland.” In this survey, a population of 493,863 units was divided into 12
domains and stratified into 66 strata. A sample of 3600 units is to be allocated.

We consider two choices of (wi )i=1,...,12 and two choices of (κi )i=1,...,12.
In L2-norm approach, we consider either wi = 1, i = 1, . . . , 12 (labeled L1) or

w1 = · · · = w6 = 4, w7 = · · · = w12 = 12 (labeled L2).
In the eigenproblem approach, we consider either κi = 1, i = 1, . . . , 12 (labeled

E1) or κ1 = · · · = κ6 = 4, κ7 = · · · = κ12 = 1 (labeled E2).
The results are given in the table below:

i Hi E1:ni E1:cvi L1:ni L1:cvi E2:ni E2:cvi L2:ni L2:cvi

1 9 389 9.56 722 6.97 146 15.68 1189 5.44
2 3 358 9.56 249 11.47 134 15.68 209 12.53
3 3 387 9.56 222 13.10 159 15.68 186 14.42
4 3 53 9.56 341 3.75 20 15.68 286 4.09
5 3 219 9.56 183 10.45 82 15.68 154 11.42
6 3 157 9.56 181 8.88 59 15.68 152 9.72
7 3 100 9.56 186 6.98 148 7.84 156 7.63
8 6 152 9.56 124 10.59 226 7.84 104 11.58
9 9 137 9.56 183 8.26 202 7.84 153 9.03
10 12 182 9.56 367 6.71 270 7.84 308 7.34
11 3 735 9.56 423 12.67 1077 7.84 355 13.86
12 9 731 9.56 416 12.70 1079 7.84 349 13.88

In the table above, Hi , ni and cvi denote, respectively, the number of strata, the
(rounded) number of units to be drawn, cv of the estimator in the domain i , i =
1, . . . , I . Note that, as designed, E1:cvi are identical throughout domains,while E2:cvi
are twice larger for the first six domains. Note also that in both cases of L2-norm
minimization the cvi ’s fluctuate and do not seem to be controlled easily.
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