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a b s t r a c t

In Sabot and Tarrès (2015), the authors have explicitly computed the integral

STZn =

∫
exp(−⟨x, y⟩)(detMx)−1/2dx

where Mx is a symmetric matrix of order n with fixed non-positive off-diagonal
coefficients and with diagonal (2x1, . . . , 2xn). The domain of integration is the part of
Rn for which Mx is positive definite. We calculate more generally for b1 ≥ 0, . . . bn ≥ 0
the integral∫

exp
(

−⟨x, y⟩ −
1
2
b⊤M−1

x b
)
(detMx)−1/2dx,

we show that it leads to a natural family of distributions in Rn, called the MRIGn
probability laws. This family is stable by marginalization and by conditioning, and it has
number of properties which are multivariate versions of familiar properties of univariate
reciprocal inverse Gaussian distribution. In general, if the power of detMx under the
integral in STZn is distinct from −1/2 it is not known how to compute the integral.
However, introducing the graph G having V = {1, . . . , n} for set of vertices and the set
E of {i, j}′ s of non-zero entries of Mx as set of edges, we show also that in the particular
case where G is a tree, the integral∫

exp(−⟨x, y⟩)(detMx)q−1dx

where q > 0, is computable in terms of the MacDonald function Kq.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction: the Sabot–Tarrès–Zeng integral

Let us describe the integral appearing in Sabot and Tarrès [14]. Let W = (wij)1≤i,j≤n be a symmetric matrix such
that wii = 0 for all i = 1, . . . , n and such that wij ≥ 0 for i ̸= j. For x = (x1, . . . , xn) ∈ Rn define the matrix
Mx = 2 diag(x1, . . . , xn) − W . For instance if n = 3 we have

Mx =

[ 2x1 −w12 −w13
−w12 2x2 −w23
−w13 −w23 2x3

]
.
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Denote by CW the set of x ∈ Rn such that Mx is positive definite. It is easy to see that CW is an open non-empty unbounded
convex set. This is not a cone in general. Frequently we consider the undirected graph G with set of vertices {1, . . . , n}
and with set of edges E = {{i, j} ; wij > 0} and we speak of the graph G associated to W . The Sabot–Tarrès–Zeng integral
is, for y1, . . . , yn > 0

STZn =

∫
CW

e−(x1y1+···+xnyn) dx1 × · · · × dxn
√
detMx

=

(√
π

2

)n
1

√
y1 × · · · × yn

e−
1
2
∑

ij wij
√yiyj . (1)

Sabot and Tarrès [14] give a probabilistic proof of this remarkable result. Another proof is in Sabot, Tarrès and Zeng [15],
based on the Cholesky decomposition. This integral leads naturally to consideration of probability laws on Rn that we
call STZn distributions with densities proportional to e−⟨x,y⟩(detMx)−1/21CW (x). In the present paper we derive, using a
different approach than the two methods mentioned above, a more general MRIGn integral in Theorem 2.2. In particular,
we give a new proof of (1). The symbol MRIG for multivariate reciprocal inverse Gaussian, is explained below.

This MRIGn integral enables us to create a new set (called the MRIGn family) of distributions on Rn which is stable by
marginalization and, up to a translation, stable by conditioning. The bibliography concerning the appearance of the STZn
and MRIGn laws in probability theory is already very rich and we suggest to look at Sabot and Zeng [16] and Disertori,
Merkl and Rolles [7] for many references. An unpublished observation of 2015 of the first author has been used and
reproved in these two publications and some facts of the present paper can be found in them. However, we use here only
elementary methods to get our results.

Let us recall that in literature, the generalized inverse Gaussian distributions GIG(a, b, q) are one dimensional laws with
density proportional to e−a2x− b2

4x xq−11(0,∞)(x), for a, b > 0 and q real (see Seshadri [18] for instance). Parameterizations
differ according to the needs of authors and we have chosen an appropriate one in the present paper. The most famous
particular case is for q = −1/2 with the inverse Gaussian distribution. A random variable Y with the inverse Gaussian
distribution IG(a, b) = GIG(a/2, 2b, −1/2) has Laplace transform

E(e−sY ) = eb(a−
√

a2+s) (2)

for s > −a2. Its density is proportional to e−
a2y
4 −

b2
y y−3/21(0,∞)(y). A less known case, but the important one for the

present paper, is for q = 1/2 with the reciprocal inverse Gaussian distribution. Actually, it is a distribution of the
inverse of a random variable with an IG distribution. A random variable X with a reciprocal inverse Gaussian distribution
RIG(a, b) = GIG(a, b, 1/2) has Laplace transform for s > −a2

E(e−sX ) =
a

√
a2 + s

eb(a−
√

a2+s) (3)

and is such that

E(X) = m =
ab + 1
2a2

, E(X2) =
1
4a4

(a2b2 + 3ab + 3), Var(X) =
ab + 2
4a4

. (4)

Its density is proportional to e−a2x− b2
4x x−1/21(0,∞)(x). This law is considered for instance in Barndorff–Nielsen and

Koudou [3]. Our MRIGn distributions have some properties which are multivariate versions of properties known for the
univariate RIG law. These are good reasons for attaching the name multivariate (n-dimensional) RIG to the members of
this family. A particular case of the family MRIG2 appears in Barndorff–Nielsen, Blaesild and Seshadri [2]. The family STZ2
appears in Barndorff–Nielsen and Rysberg [4].

Section 2 proves and comments on the MRIGn integral, including a presentation of the Disertori–Spencer–Zinbauer [8]
and Disertori–Merkles–Rolles [7] integrals in the studies of supersymmetry. Section 3 gives some examples. Section 4
details the properties of the MRIGn laws (we carefully distinguish along the paper the MRIGn integral and the MRIGn
laws). Section 5 considers the particular case of the STZn integral when the graph G associated to W is a tree. Then we
generalize the STZn integral by computing in this case

∫
CW

exp(−⟨x, y⟩)(detMx)q−1dx and thus, in particular, obtaining the
norming constant for the density considered in Massam and Wesołowski [11]. Interestingly enough, this generalization
allows us to not restrict to the case where the wij’s are non-negative. The reason is the not so well known fact: if the
associated graph of a positive definite matrix M = (mij) is a tree then the symmetric matrix M ′

= (±mij) is still positive
definite whatever the ± are outside of the diagonal; therefore CW is unchanged. Section 6 mentions a striking consequence
(Corollary 6.2) of the MRIGn integral: if (B1, . . . , Bn) is multivariate normal, i.e. (B1, . . . , Bn) ∼ N(0,Mx), then

Pr(B1 > 0, . . . , Bn > 0) =
1

(2π )n/2

∫
CW∩{t≤x}

dt
√
(x1 − t1) · · · (xn − tn)

√
detMt

.

Section 7 proves a marginal but delicate fact that the densities of the MRIGn distributions are continuous on the whole
Rn. A first version of this paper is on arXiv 1709.04843.
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2. The MRIGn integral

2.1. The integral and its various forms

It is useful to recall a classical formula, which is in fact the particular case n = 1 of Theorem 2.2 and the starting point
of an induction proof.

Lemma 2.1. If a > 0 and b ≥ 0 then∫
∞

0
e−

a2t2
2 −

b2

2t2 dt =

√
π

2
1
a
e−ab. (5)

Various proofs of Lemma 2.1 exist in the literature. An elegant one considers the equivalent formulation

a
√
2π

∫
∞

−∞

exp
[
−

1
2
(at −

b
t
)2
]

dt = 1 (6)

and proves (6) by the change of variable x = ϕ(t) = t −
b
at which preserves the Lebesgue measure on R. This idea seems

to be due to George Boole [6]. In the sequel, if a is a column vector, or more generally a matrix, then a⊤ denotes the
transposed matrix of a.

Theorem 2.2. Let a1, . . . , an > 0 and b1, . . . , bn ≥ 0. Then with a = (a1, . . . , an)⊤ and b = (b1, . . . , bn)⊤ we have

MRIGn =

∫
CW

e−
1
2 (a⊤Mxa+b⊤M−1

x b) dx
√
detMx

=

(π

2

)n/2 e−(a1b1+···+anbn)

a1 × · · · × an
(7)

Comments.

• Inserting t =
√
2x in (5) we see that (5) is the particular case n = 1 of (7).

• Remarkably, the right hand side of (7) does not depend on W .
• Another presentation of (7) is∫

CW

exp(−
1
2

∥M1/2
x a − M−1/2

x b∥2)
dx

√
detMx

=

(π

2

)n/2 1
a1 × · · · × an

.

For n = 1 this is nothing but (6) after the change of variable x = t2/2.
• Another variation: from (23), writing for short

√
s = (

√
s1, . . . ,

√
sn)⊤ we have(

2
π

)n/2 ∫
CW

e−⟨x,s⟩− 1
2 b

⊤M−1
x b dx

√
detMx

=
1

√
s1 × · · · × sn

e−2⟨b,
√
s⟩− 1

2
√
s⊤W

√
s.

• One more variation of (7) and (23) is obtained by considering a positive definite matrix A = (aij)1≤i,j≤n in the formula(
2
π

)n/2 ∫
CW

e−
1
2 tr (MxA)− 1

2 b
⊤M−1

x b dx
√
detMx

=
1

√
a11 × · · · × ann

e−(b1
√
a11+···+bn

√
ann)− 1

2
∑n

i,j=1 wij(
√aiiajj−aij).

If A = Σ−1, consider the Gaussian random variable X = (X1, . . . , Xn) ∼ N(0, Σ). Recall that ρij = −aij/
√
aiiajj is the

correlation between Xi and Xj conditioned by all (Xk; k ̸= i, j). Therefore
n∑

i,j=1

wij(
√
aiiajj − aij) =

n∑
i,j=1

wij
√
aiiajj(1 + ρij).

• In (23) the condition a1, . . . , an > 0 is easily relaxed to a1, . . . , an ̸= 0: on the right hand side of a1, . . . , an > 0
replace ai by |ai|, Things are quite different for the condition b1, . . . , bn ≥ 0: see the comments of the example n = 2
in Section 3.

2.2. Proof of Theorem 2.2

Proof. We prove it by induction on n. As mentioned above, Lemma 2.1 is the case n = 1. Assume that the result is true
for n. Consider

W 1
=

[
W c
c⊤ 0

]
, M1

=

[
Mx −c

−c⊤ 2xn+1

]
, (8)
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where c = (c1, . . . , cn)⊤ with ci ≥ 0 for all i. We now assume that (x, xn+1) ∈ CW1 . From the positive definiteness of M1

we see that the Schur complement t2 = 2xn+1 − c⊤M−1
x c is positive. We write

M1
=

[
In 0

−c⊤M−1
x 1

][
Mx 0
0 t2

][
In −M−1

x c
0 1

]
. (9)

Equality (9) leads to the computation of (M1)−1 as follows:

(M1)−1
=

[
In M−1

x c
0 1

][
M−1

x 0
0 t−2

][
In 0

c⊤M−1
x 1

]
=

[
M−1

x + t−2M−1
x cc⊤M−1

x t−2M−1
x c

t−2c⊤M−1
x t−2

]
.

Before writing down the integral MRIGn+1 we observe that

(a⊤, an+1)M1
(

a
an+1

)
= a⊤Mxa − 2a⊤can+1 + 2xn+1a2n+1

= −2a⊤can+1 + a⊤Mxa + c⊤M−1
x ca2n+1 + t2a2n+1

(b⊤, bn+1)(M1)−1
(

b
bn+1

)
= b⊤M−1

x b + t−2b⊤M−1
x cc⊤M−1

x b + 2t−2b⊤M−1
x cbn+1 + t−2b2n+1

= b⊤M−1
x b + t−2(bn+1 + b⊤M−1

x c)2. (10)

Also observe that the convex set CW1 is parameterized by (x, t) in CW × (0, ∞) and that, from (9) we have detM1
=

t2 detMx. With this parameterization we have

dxdxn+1
√
detM1

=
dx

√
detMx

dt.

We now write MRIGn+1 as follows

MRIGn+1 = ea
⊤can+1

∫
CW

exp−
1
2

[
a⊤Mxa + c⊤M−1

x ca2n+1 + b⊤M−1
x b

]
×

(∫
∞

0
exp−

1
2

[
t2a2n+1 + t−2(bn+1 + b⊤M−1

x c)2
]
dt
)

dx
√
detMx

=

√
π

2
1

an+1
ea

⊤can+1−an+1bn+1

∫
CW

exp−
1
2

[
a⊤Mxa + (c⊤an+1 + b⊤)M−1

x (can+1 + b)
] dx

√
detMx

(11)

=

(π

2

)(n+1)/2 1
a1 × · · · × an+1

e−a⊤b−an+1bn+1 . (12)

In this chain of equalities (11) is a consequence of Lemma 2.1 applied to the pair

an+1, bn+1 + b⊤M−1
x c.

Here a comment is in order: a famous lemma of Stieltjes implies that M−1
x has non-negative coefficients when x ∈ CW . Let

us detail the proof in this particular case: if D = 2 diag(x1, . . . , xn) then Mx = D1/2(In − A)D1/2 where A = D−1/2WD−1/2.
Since Mx is positive definite, In − A is also positive definite. Now write (In − A)−1

= In + A+ · · · + A2N−1
+ AN (In − A)−1AN .

Since AN (In − A)−1AN is positive semidefinite, its trace is ≥ 0 and therefore for all N
2N−1∑
k=0

tr (Ak) ≤ tr (In − A)−1.

Since A has non-negative coefficients this implies that
∑

∞

k=0 tr (A
k) converges. In particular limN→∞ tr (A2N ) = 0. This

implies that all the eigenvalues of A are in (−1, 1) and therefore the series of matrices S =
∑

∞

k=0 A
k converges to (In−A)−1.

Since A has non-negative coefficients the same is true for S and for M−1
x = D−1/2SD−1/2. Furthermore, if the graph G has

vertices {1, . . . , n} and has edges {i, j} present according to the fact that aij > 0 or not, then (In − A)−1 is positive definite
if G is connected (this remark will be used in the proof of Lemma 2.4).

As a consequence bn+1 + b⊤M−1
x c ≥ 0 and therefore (5) is applicable. Equality (12) is a consequence of the induction

hypothesis where the pair (a, b) is replaced by (a, an+1 c + b). The induction hypothesis is extended. □

2.3. Laplacian of W and parameterizations of CW by (0, ∞)n and Rn

In order to show in Section 2.4 that two other remarkable integrals can be deduced from the MRIGn integral (7), it is
necessary to recall some definitions about Laplacian on graphs or weighted graphs (see for instance Bapat [1]). We define
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the Laplacian of W as the quadratic form on Rn defined by

v⊤LWv =

∑
i<j

wij(vi − vj)2 =
1
2

n∑
i=1

n∑
j=1

wij(vi − vj)2. (13)

If si =
∑n

j=1 wij and if D = diag(s1, . . . , sn) the representative matrix of this quadratic form is LW = D − W . From the
definition it is semi positive definite, and since (1, . . . , 1)⊤ is a eigenvector of LW associated to the eigenvalue zero, LW
cannot be positive definite. However, by adding a proper diagonal matrix

Db = diag(b1, . . . , bn)

with bi ≥ 0 the matrix Db + LW can be positive definite. One can also remark that W 1
=

[
W b
b⊤ 0

]
implies that

LW1 =

[
Db + LW −b

−b⊤
∑n

j=1 bj

]
.

Lemma 2.3. Db + LW is positive definite if and only if for each connected component C of the graph associated to W there
exists k ∈ C such that bk > 0.

Proof. ⇐ Enough is to assume that the associated graph is connected and that there exists a k such that bk > 0. If v is
such that v⊤(Db + LW )v = 0 then vk = 0. Furthermore vi − vj = 0 if wij > 0. Since the associated graph is connected
all the vi’s are equal, and they are zero like vk : this shows the positive definiteness of Db + LW . ⇒ Here again we can
assume that G is connected. We have seen that if bi = 0 for all i then Db + LW = LW cannot be positive definite. □

The next lemma describes an important parameterization of CW by (0, ∞)n. Note that it depends on a non-zero
parameter b = (b1, . . . , bn)⊤ ∈ [0, ∞)n. The case b = (1, . . . , 1)⊤ is most useful.

Lemma 2.4. Assume that the graph G associated to W is connected. Let y ∈ (0, ∞)n, fix b ∈ [0, ∞)n such that b ̸= 0 and
define x ∈ Rn by

2xi =
1
yi

⎛⎝bi +
n∑

j=1

wijyj

⎞⎠ (14)

Then x belongs to CW , we have Mx = DbD−1
y + LW and y = M−1

x b, the map y ↦→ x is a diffeomorphism from (0, ∞)n onto CW
and

dx =
detMx

2n

dy
y1 × · · · × yn

. (15)

Proof. We rewrite (14) as 2xiyi −
∑n

j=1 wijyj = bi and thus it is equivalent to b = Mxy. Denote

W (y)
= DyWDy (16)

and s(y)i =
∑n

j=1 wijyiyj = 2xiy2i − biyi. Therefore

Ds(y) = 2DyDxDy − DbDy, LW (y) = Ds(y) − W (y)
= 2DyDxDy − DbDy − DyWDy.

From the definition (13) of the Laplacian we have LW (y) = DyLWDy and we get

DbDy + LW (y) = 2DyDxDy − DyWDy, DbD−1
y + LW = Mx.

From Lemma 2.3 Mx = DbD−1
y + LW is positive definite and furthermore y = M−1

x b. Equality b = Mxy shows that the
map y ↦→ x from (0, ∞)n to CW is injective since 0 = Mx(y − y′) implies y = y′ from the definite positiveness of Mx. If
x ∈ CW , define y = M−1

x b. The fact that M−1
x has only non-negative coefficients implies that y ∈ [0, ∞)n. The fact that

G is connected implies that y ∈ (0, ∞)n. We get Mx = DbD−1
y + LW and this shows the surjectivity since any y ∈ (0, ∞)

provides a positive definite matrix DbD−1
y + LW . The fact that y ↦→ x is a diffeomorphism from (0, ∞)n onto CW is clear.

The differential of the map y ↦→ x from CW onto (0, ∞)n is

h ↦→ −2M−1
x DhM−1

x b = −2M−1
x Dhy. (17)

For showing (17) we observe that the differential of M ↦→ M−1 is H ↦→ −M−1HM−1 and that the differential of the map
x ↦→ Mx is h ↦→ 2Dh. The Jacobian of y ↦→ x is therefore 2n

detMx
y1 × · · · × yn and this proves (15). □
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Replacing yi by eti we will use Lemma 2.4 in the next section under the following form:

Corollary 2.5. Under the hypothesis of Lemma 2.4, for t ∈ Rn define

2xi(t) = bie−ti +

n∑
j=1

wijetj−ti .

Then the map t ↦→ x = x(t) is a diffeomorphism from Rn onto CW and dx =
detMx
2n dt.

2.4. The Disertori–Spencer–Zirnbauer and Disertori–Merkl–Rolles integrals

In application of Theorem 2.2 and Corollary 2.5, we prove two surprizing formulas DSZn and DMRn due to Disertori,
Spencer and Zirnbauer [8] and Disertori, Merkl and Rolles [7]. For describing them we need the following notations. We
consider the quadratic form in (1.1) of the first paper:

v⊤D(t)v =

∑
1≤i<j≤n

wijeti+tj (vi − vj)2 +

n∑
k=1

bketkv2
k .

The element (i, i) of the corresponding n × n matrix D(t) is bieti +
∑n

j=1 wijeti+tj and the off diagonal element (i, j) is
−wijeti+tj . This is nothing but the quadratic form with matrix D(t) = DbDy + LW (y) as in (16) when yi = eti for all i.

We introduce a function G(t) which is only marginally different from the F defined by (1.2) in [8].

G(t) =

∑
i<j

wij(cosh(ti − tj) − 1) +

n∑
k=1

((cosh tk − 1)bk + tk) . (18)

With these notations, the surprising formula (1.4) of [8], see (19), is the subject of the following proposition.

Proposition 2.6. Assume that W is such that the associated graph is connected and fix b ∈ [0, ∞)n with b ̸= 0. Then

DSZn =
1

(
√
2π )n

∫
Rn

e−G(t)
√
detD(t)dt = 1. (19)

Proof. In (7) we insert a1 = · · · = an = 1 and we make the change of variable x ↦→ t from CW onto Rn described in
Corollary 2.5. We get

−
1
2
(a⊤Mx(t)a + b⊤M−1

x(t)b) = −
1
2

n∑
i=1

2xi(t) +
1
2

n∑
i=1

n∑
j=1

wij −
1
2

n∑
i=1

bieti

= −
1
2

n∑
i=1

bi(eti + e−ti ) −
1
2

∑
i<j

wij(etj−ti + eti−tj − 2) = −

n∑
i=1

bi cosh ti −
∑
i<j

wij(cosh(tj − ti) − 1).

Since D(t) = Dy(t)Mx(t)Dy(t) we have detD(t) = e
∑n

i=1 2ti detMx(t). Using Corollary 2.5 we obtain (19). □

Similarly, formula (2.4) of Disertori, Merkl and Rolles [7] introduces a probability µ(ds, dt) on Rn
× Rn defined by

µ(ds, dt) = e−
1
2 s⊤D(t)s−G1(t) detD(t)

dtds
(2π )n

(20)

where the function G1 is quite close to the function G defined by (18) and is defined by

G1(t) =

∑
i<j

wij(cosh(ti − tj) − 1) +

n∑
k=1

(e−tkbk + tk) = G(t) +

n∑
k=1

(1 − sinh tk)bk.

If (S, T ) ∼ µ it is clear that S is Gaussian when conditioned by T . However, the fact that the total mass of µ is one is not that
obvious. The result is stated in Proposition 2.7. We skip its proof which uses again Corollary 2.5. It is a consequence of the
STZn integral (1), by the change of variable of Corollary 2.5. The hypotheses on W and b are the same as in Proposition 2.6.

Proposition 2.7. Let f (t) =
1

(
√
2π )n

e−G1(t)
√
detD(t). Then f is a probability density on Rn. Furthermore if T ∼ f (t)dt and

S|T ∼ N(0,D(T )−1) then (S, T ) ∼ µ defined by (20).

3. Examples

The following examples consider various graphs associated to W where some calculations about Mx are explicit.
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3.1. The case n = 2.

We take

W =

[
0 1
1 0

]
, Mx =

[
2x1 −1
−1 2x2

]
, M−1

x =
1

4x1x2 − 1

[
2x2 1
1 2x1

]
and CW is the convex set of R2 limited by one branch of a hyperbola

CW = {(x1, x2) ; x1, x2 > 0, 4x1x2 − 1 > 0}.

Theorem 2.2 says that∫ ∫
CW

exp−[a21x1 + a22x2 − a1a2 +
1

4x1x2 − 1
(b21x2 + b22x1 + b1b2)]

dx1dx2
√
4x1x2 − 1

=
π

2
e−a1b1−a2b2

a1a2
.

A warning: the extension of MRIGn to the case where some bi’ s are negative leads to a non elementary integral. The
case n = 2 is appropriate for explaining this fact: following the steps of the proof of Theorem 2.2 we arrive up to a
multiplicative constant to the integral

ea1a2
∫

∞

0
e−a21x1−

a22+b21
4x1

−a2
⏐⏐⏐b2+

b1
2x1

⏐⏐⏐ dx1
√
2x1

that we cannot evaluate when b1b2 < 0.

3.2. The complete graph for n ≥ 3

We consider the case where wij = c for all i ̸= j. Denote by Jn the n × n matrix with all entries equal to 1. Therefore
W = c(Jn − In).

Proposition 3.1. If W = c(Jn − In) then

detMx = (c + 2x1) · · · (c + 2xn)(1 −

n∑
i=1

c
c + 2xi

), (21)

CW = {(x1, . . . , xn); x1, . . . , xn ≥ 0,
n∑

i=1

c
c + 2xi

< 1}. (22)

Proof. Write D = 2diag(x1, . . . , xn) + cIn. Therefore Mx = D − cJn = D1/2(In − A)D1/2 where A = cD−1/2JnD−1/2
= vv⊤ and

v = (
√
c

√
c + 2x1

, . . . ,

√
c

√
c + 2xn

)⊤.

The eigenvalues of A are 0 with multiplicity n − 1 and v⊤v =
∑n

i=1
c

c+2xi
. This implies that the eigenvalues of In − A

are 1 with multiplicity n − 1 and 1 −
∑n

i=1
c

c+2xi
. This leads to (21). To prove (22), clearly the right-hand side contains

CW . Conversely if xi > 0 for all i writing Mx = D1/2(I − A)D1/2 shows x ∈ CW if and only if I − A is positive definite,
i.e. 1 −

∑n
i=1

c
c+2xi

> 0. □

3.3. The daisy

We consider the case where

W =

⎡⎢⎢⎢⎢⎣
0 c1 c2 . . . cn
c1 0 0 . . . 0
c2 0 0 . . . 0

. . . . . . . . .
. . . . . .

cn 0 0 . . . 0

⎤⎥⎥⎥⎥⎦ , Mx =

⎡⎢⎢⎢⎢⎣
2x0 −c1 −c2 . . . −cn
−c1 2x1 0 . . . 0
−c2 0 2x2 . . . 0

. . . . . . . . .
. . . . . .

−cn 0 0 . . . 2xn

⎤⎥⎥⎥⎥⎦
It is easy to see by induction that

detMx = 2nx1 × · · · × xn

(
2x0 −

n∑
i=1

c2i
2xi

)
,

CW = {(x0, . . . , xn); x0, . . . , xn > 0, 2x0 −

n∑
i=1

c2i
2xi

> 0}.
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It is elementary to write M−1
x explicitly. If we write for simplicity

M(a, b, c) =

⎡⎢⎢⎢⎢⎣
a c1 c2 . . . cn
c1 b1 0 . . . 0
c2 0 b2 . . . 0

. . . . . . . . .
. . . . . .

cn 0 0 . . . bn

⎤⎥⎥⎥⎥⎦
B = b1 × · · · × bn, D = detM(a, b, c) = B

(
a −

∑n
i=1

c2i
bi

)
and H = M(a, b, c)−1

= (hij)0≤i,j≤n then for i ̸= j and distinct

from 0 we have

h00 =
B
D

, h0i = −
B
D

ci
bi

, hii =
1
bi

(
1 +

B
D
c2i
bi

)
, hij =

cicj
bibj

(
1 +

B
D
(
c2i
bi

+
c2j
bj

)

)
For n = 2 it gives D = detMx = 8x0x1x2 − 2x2c21 − 2x1c22 and

M−1
x =

1
D

⎡⎣ 4x1x2 2c1x2 2c2x1
2c1x2 4x0x2 − c22 c1c2
2c2x1 c1c2 4x0x1 − c21

⎤⎦
3.4. The chain

Define An+1 as the graph
0
• −

1
• −

2
• − · · · −

n
• corresponding to the matrix

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 c1 0 0 · · · 0 0
c1 0 c2 0 · · · 0 0
0 c2 0 c3 · · · 0 0
0 0 c3 0 · · · 0 0

· · · · · · · · · · · ·
. . . · · · · · ·

0 0 0 0 · · · 0 cn
0 0 0 0 · · · cn 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where c1, . . . , cn > 0. Thus Mx = −W + diag(2x0, 2x1, . . . , 2xn) is a Jacobi matrix. Without losing generality we may
assume that c1 = · · · = cn = 1 by the transformation

diag(λ0, λ1, . . . , λn) Mx diag(λ0, λ1, . . . , λn)

where

λ0 = 1, λ1 =
1
c1

, λ2p =
c1c3 . . . c2p−1

c2c4 . . . c2p
, λ2p+1 =

c2c4 . . . c2p
c1c3 . . . c2p+1

thus replacing xi by the affinity xiλ2
i . If D0 = 2x0 and D1 = 4x0x1 − 1 then the determinant Dn of the matrix

Mx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2x0 −1 0 0 · · · 0 0
−1 2x1 −1 0 · · · 0 0
0 −1 2x2 −1 · · · 0 0
0 0 −1 2x3 · · · 0 0

· · · · · · · · · · · ·
. . . · · · · · ·

0 0 0 0 · · · 2xn−1 −1
0 0 0 0 · · · −1 2xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is computable by the induction formula Dn = 2xnDn−1 − Dn−2. For instance for n = 3 the set CW is described by the four
inequalities

x0 > 0, 4x0x1 − 1 > 0, 4x0x1x2 − x0 − x2 > 0, 16x0x1x2x3 − 4x0x3 − 4x2x3 − 4x1x2 + 1 > 0.

Since the chain An+1 is also a tree, results of Section 5 are applicable to this example.
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4. A study of the MRIGn distributions

4.1. MRIGn As a natural exponential family

Writing si = a2i in (7) we obtain(
2
π

)n/2 ∫
CW

e−⟨x,s⟩− 1
2 b

⊤M−1
x b dx

√
detMx

=
1

√
s1 × · · · × sn

e−(b1
√
s1+···+bn

√
sn)− 1

2
∑n

i,j=1 wij
√sisj , (23)

which suggests that the natural exponential family (NEF) concentrated on CW ⊂ Rn generated by the unbounded measure

µ(b,W )(dx) = e−
1
2 b

⊤M−1
x b1CW (x)

dx
√
detMx

(24)

is interesting to study. For n = 1 if b1 > 0 this is nothing but a RIG distribution mentioned in (3) and if b1 = 0 it is a
Gamma family with shape parameter 1/2. For n > 1 and b = 0 this family is considered in Sabot, Tarrès and Zeng (2016).
Given W and a ∈ (0, +∞)n, b ∈ [0, +∞)n we consider the probability on [0, +∞)n defined by

P(a; b,W )(dx) = (
2
π
)n/2

⎛⎝ n∏
j=1

ajeajbj

⎞⎠ e−
1
2 a⊤Mxa− 1

2 b⊤M−1
x b1CW (x)

dx1 × · · · × dxn
√
detMx

.

We say that P(a; b,W ) is a MRIGn distribution. Theorem 2.2 proves that it is indeed a probability. From time to time
we will use the notation f (a; b,W )(x) for the density of P(a; b,W ). Note that (X1, . . . , Xn) ∼ P(a; b, 0) iff X1, . . . , Xn are
independent and Xk ∼ RIG(ak, bk), k ∈ {1, . . . , n}.

In this section, we show that if X has a MRIGn distribution then the subvector (X1, . . . , Xk) has a MRIGk distribution.
We also show that up to a translation factor, the conditional distribution of (Xk+1, . . . , Xn) given (X1, . . . , Xk) has a
MRIGn−k distribution. Thus the class of MRIGn distributions has a remarkable property of stability by marginalization and
conditioning. These facts have been independently observed by Sabot and Zeng [17] in their Lemma 5, and also mentioned
in Sabot and Zeng [16] quoting the arXiv versions of Sabot and Zeng [16] and of the present paper.

We begin with the calculation of the Laplace transform of P(a; b,W ). Introducing the following function:

G(a; b,W ) = (
π

2
)n/2

⎛⎝ n∏
j=1

e−ajbj

aj

⎞⎠ e−
1
2 a⊤Wa, (25)

we remark that P(a; b,W )(dx) can be written as

P(a; b,W )(dx) =
1

G(a; b,W )
e−(x1a21+···+xna2n)µ(b,W )(dx). (26)

Under the form (26) we see that for fixed b ∈ [0, ∞)n

Fb = {P(a; b,W ), a ∈ (0, ∞)n}

is a natural exponential family, parameterized by a and not by its natural parameter (s1, . . . , sn) = (a21, . . . , a
2
n), and

generated by µ(b,W ). From the fact that the mass of (26) is one, the Laplace transform of µ(b,W ) is defined for s ∈ (0, ∞)n
by

Lµ(b,W )(s) = G((
√
s1, . . . ,

√
sn); b,W ).

We deduce from this the form of the Laplace transform of P(a; b,W ) itself.

Proposition 4.1. If (X1, . . . , Xn) ∼ P(a; b,W ) then

E(e−(s1X1+···+snXn)) = e⟨a,b⟩−⟨

√
a2+s,b⟩ea

⊤Wa−
√

a2+s
⊤

W
√

a2+s
n∏

j=1

aj√
a2j + sj

, (27)

where we have written symbolically
√
a2 + s = (

√
a21 + s1, . . . ,

√
a2n + sn)⊤. In particular

E(Xi) = mi =
1
2ai

⎛⎝bi +
∑
j̸=i

wijaj

⎞⎠ , (28)

Var(Xi) =
1
4a4i

+
mi

2a2i
, (29)

Cov(Xi, Xj) = −
wij

4aiaj
. (30)
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Comments. The one dimensional margins are the classical RIG distributions (3). More specifically the distribution of Xi is

RIG(ai, bi +
n∑

j=1

wijaj) = RIG(ai, 2aimi).

In other terms the two parameters of the distribution of Xi’s are the i components of the vectors a and b + Wa. Formula
(28) expresses mi with a formula which is the successful change of variable (14) where the pair (x, y) is replaced here
by (m, a). Observe also that the covariance of (Xi, Xj) is never positive. It can be mentioned that, like for a Gaussian
distribution, the parameters (a, b,W ) of the distribution MRIGn are determined if we know the distributions of all pairs
(Xi, Xj) : the knowledge of the distribution of Xi gives from (28) and (29) the knowledge of mi and ai. The knowledge
of the distribution of (Xi, Xj) and of a gives from (30) the knowledge of wij and W , and then (28) gives the value of bi.
Estimation of the parameters can be designed from this remark. One more analogy with the Gaussian distributions is the
fact that if X ∼ MRIGn then Xi and Xj are independent if and only if they are uncorrelated: this can be read from the
Laplace transform of X .

Proof of Proposition 4.1. Formula (27) comes immediately from

E(e−s1X1−···−snXn ) =

G(
√
a21 + s1, . . . ,

√
a2n + sn); b,W

G(a; b,W )
.

Eqs. (28) and (29) are consequence of the properties of the one dimensional RIG given in (4). The simple formula (30) is
obtained by Cov(Xi, Xj) =

∂2

∂si∂sj
logG(

√
a21 + s1, . . . ,

√
a2n + sn); b,W |s=0. □

4.2. The marginals of the MRIGn distribution

For stating the next results we need the following notations:

• For vectors (a1, a2, . . . , an)⊤ and (b1, b2, . . . , bn)⊤ we denote

ãk = (a1, . . . , ak)⊤, b̃k = (b1, . . . , bk)⊤.

With this notation sometimes we write P(ãn; b̃n,W ) for P(a; b,W ).
• If

Wn =

⎡⎢⎢⎣
0 w12 w13 . . . w1n

w12 0 w23 . . . w2n

. . . . . . . . .
. . . . . .

w1n w2n w3n . . . 0

⎤⎥⎥⎦
for k ∈ {2, 3, . . . , n} we take ck ∈ Rk−1 defined as the kth column of Wn but restricted to be above the diagonal,
namely ck = (w1k, w2k, . . . , wk−1,k)⊤.

• If k ∈ {1, 2, 3, . . . , n} we write Wn by blocks as follows

Wn =

[
Wk Wk,n−k

W⊤

k,n−k W ′

n−k

]
.

In other terms Wk = [wij]1≤i,j≤k, W ′

n−k = [wij]k+1≤i,j≤n.
• The killing symbol K from Rn to Rn−1 is defined by

K (x1, . . . , xn)⊤ = (x1, . . . , xn−1)⊤.

For instance Kb̃k = b̃k−1. In general for k < n we have

K n−k(x1, . . . , xn)⊤ = (x1, . . . , xk)⊤.

Proposition 4.2. If (X1, . . . , Xn) ∼ P(ãn, b̃n,W ) then (X1, . . . , Xk) ∼ P(ãk, Bk,Wk) where

Bk = b̃k +

n∑
j=k+1

ajK j−k−1cj = b̃k + Wk,n−k(ak+1, . . . , an)⊤.

Proof. For k = n − 1, this is claiming that (X1, . . . , Xn−1) ∼ P(ãn−1, b̃n−1 + ancn,Wn−1). Such a formula is essentially
formula (11) when replacing n by n + 1.
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We now prove the result by induction on n − k. Suppose that (X1, . . . , Xk) ∼ P(ãk, Bk,Wk) is true. Then as for the
passage from n to n − 1 we can claim that (X1, . . . , Xk−1) ∼ P(ãk−1, KBk + akck,Wk−1). Now we have

KBk + akck = Kb̃k + akck + K
n∑

j=k+1

ajK j−k−1cj = b̃k−1 + akck +

n∑
j=k+1

ajK j−kcj = Bk−1,

and the induction is extended. □

Comments.

• Proposition 4.2 could have been proved with the Laplace transform of Proposition 4.1, but seems that after all
induction is simpler.

• A reformulation of Proposition 4.2 is the explicit form of the integral∫
CW ′

n−k

fãn;b̃n,Wn
(x̃k, xk+1, . . . , xn)dxk+1 . . . dxn = fãk,Bk,Wk (x̃k),

namely

(
2
π
)n/2

⎛⎝ n∏
j=1

aj

⎞⎠ e⟨a,b⟩− 1
2 a⊤Wa

∫
CW ′

n−k

e−(x1a21+···+xna2n)−
1
2 b⊤M−1

x b1CW (x)
dxk+1 . . . dxn

√
detMx

= (
2
π
)k/2

⎛⎝ k∏
j=1

aj

⎞⎠ e⟨ãk,Bk⟩e
−

1
2 ã⊤

k Mx̃k
ãk−

1
2 B⊤

k M−1
x̃k

Bk1CWk
(x̃k)

1√
detMx̃k

.

• Inserting b = 0 in Proposition 4.2 makes that (X1, . . . , Xn) has an STZn distribution. If we also take k = n − 1 we
see that Bn−1 = anc where c = (wi,n)n−1

i=1 . As a consequence, we see that any MRIGn−1 distribution is a projection of
some STZn distribution. This explains why Sabot, Tarrès and Zeng [15] indeed observe that one dimensional margins
of an STZn distribution are RIG ones.

4.3. Conditional distributions under MRIGn

Let us begin by some general observations about exponential families on a product E × F of two Euclidean spaces
generated by the distribution π (dx)K (x, dy). Let Θ ⊂ E × F be the interior of the set

{(t, s) ; L(t, s) =

∫
E×F

e−⟨t,x⟩−⟨s,y⟩π (dx)K (x, dy) < ∞}.

Let us assume that Θ is the product of two open subsets of E and F respectively:

Θ = ΘE × ΘF , (31)

let us fix (t0, s0) ∈ Θ and consider a random variable (X, Y ) valued in E × F with density

1
L(t0, s0)

e−⟨t0,x⟩−⟨s0,y⟩π (dx)K (x, dy).

We are interested in the Laplace transform of the conditional distribution of Y |X . For computing this, consider the marginal
density of X with respect to π :

1
L(t0, s0)

∫
F
e−⟨t0,x⟩−⟨s0,y⟩K (x, dy) = e−⟨t0,x⟩ g(s0; x)

L(t0, s0)
,

where we have introduced the auxiliary function

g(s0; x) =

∫
F
e−⟨s0,y⟩K (x, dy)

defined on ΘF × E. As a consequence, the conditional distribution of Y |X is e−⟨s0,y⟩K (X, dy)/g(s0; X) and its Laplace
transform is for s + s0 ∈ ΘF the ratio

s ↦→
g(s + s0; X)
g(s0; X)

. (32)

Suppose now that we are able to identify a density on F having (32) as Laplace transform. In this case the problem of
computation of the density of Y |X will be solved.
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This program will be applied to E = Rk, F = Rn−k, to a probability on Rn defined by its density

f (x) ∝ e−
1
2 b⊤M−1

x b1CW (x)
1

√
detMx

and finally to t0 = (a21, . . . , a
2
k), s0 = (a2k+1, . . . , a

2
n). We prove in Section 7 that f is continuous on Rn when b1, . . . , bn is

not zero and when the graph associated to W is connected.
This condition (31) is fulfilled with ΘE = (0, ∞)k and ΘF = (0, ∞)n−k. Of course X̃k = (X1, . . . , Xk) and (Xk+1, . . . , Xn)

replace X and Y . Also s is now (sk+1, . . . .sn) and s + s0 is described by

Ak(s) = (
√
a2k+1 + sk+1, . . . ,

√
a2n + sn)⊤.

The crucial function g(s0; x) is now constructed from Proposition 4.2, where the marginal law of (X1, . . . , Xk) is computed.
We get

g(a2k+1, . . . , a
2
n; x̃k) =

G(a; b,W )
G(ãk; Bk,Wk)

e
−

1
2 B⊤

k M−1
x̃k

Bk√
det(Mx̃k )

1CWk
(x̃k), (33)

where the function G(a; b,W ) has been introduced in (25). Remember that the right hand side of (33) depends on
ak+1, . . . , an also through Bk = b̃k + Wk,n−k(ak+1, . . . , an)⊤. Let us adopt the notation

Bk(s) = b̃k + Wk,n−kAk(s). (34)

Here is now the Laplace transform of (Xk+1, . . . , Xn) given X̃k

E(e−sk+1Xk+1−···−snXn |X̃k = x̃k) =
g((a2k+1 + sk+1, . . . , a2n + sn); x̃k)

g(a2k+1, . . . , a2n; x̃k)
= PQR

P =
G((ãk, Ak(s)); b,W )

G(a; b,W )
, Q =

G(ãk; Bk,Wk)
G(ãk; Bk(s),Wk)

, R = e
−

1
2 Bk(s)⊤M−1

x̃k
Bk(s)+

1
2 B⊤

k M−1
x̃k

Bk
. (35)

It is our intention to prove the existence of α = (αk+1, . . . , αn)⊤, β = (βk+1, . . . , βn)⊤, γ = (γk+1, . . . , γn)⊤ and of a
matrix W such that

PQR =

G(
√

α2
k+1 + sk+1, . . . ,

√
α2
n + sn; β,W)

G(αk+1, . . . , αn; β,W)
e−γk+1sk+1−···−γnsn

which is saying that the conditional distribution of (Xk+1 − γk+1, . . . , Xn − γn) given X̃k is a MRIGn−k distribution. The next
proposition gives the complete result:

Proposition 4.3. For X ∼ P(a; b,W ) consider α = (ak+1, . . . , an)⊤, β ∈ Rn−k defined by

β = (bk+1, . . . , bn)⊤ + Wn−k,kM−1
X̃k

b̃k,

the matrix D = diag(γk+1, . . . , γn) defined as the diagonal part of the matrix Wn−k,kM−1
X̃k

Wk,n−k and

W = W ′

n−k + Wn−k,kM−1
X̃k

Wk,n−k − D.

Then the conditional distribution of (Xk+1 − γk+1, . . . , Xn − γn) given X̃k is P(α, β,W).

Proof. We have to analyse the dependency on s of the three quantities P,Q , R defined above by (35). However for
simplification, we do not write the factors which do not depend on s. More specifically we introduce the following
equivalence relation among non-zero functions f or g depending on s and possibly on other parameters like a, b, W
by writing f ≡ g if f (s)/g(s) does not depend on s. For instance

P ≡

n∏
j=k+1

(a2j + sj)−
1
2 × e−(bk+1

√
a2k+1+sk+1+···+bn

√
a2n+sn)e−ã⊤

k Wk,n−kAk(s)−
1
2 Ak(s)⊤W ′

n−kAk(s),

Q ≡ eã
⊤
k Wk,n−kAk(s), R ≡ e

−
1
2 Bk(s)⊤M−1

X̃k
Bk(s)

≡ e
−Ak(s)⊤Wn−k,kM

−1
X̃k

b̃k
× e

−
1
2 Ak(s)⊤Wn−k,kM

−1
X̃k

Wk,n−kAk(s)
.

A patient analysis of the product PQR as a function of Ak(s) gives Proposition 4.3. □

4.4. A convolution property of the MRIGn laws

The following proposition is a generalization of the following additive convolution:

RIG(a, b) ∗ IG(a, b′) = RIG(a, b + b′),
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(see Barndorff–Nielsen and Koudou [3], Barndorff–Nielsen and Rydberg [4] and Barndorff–Nielsen, Blaesild and Se-
shadri [2]) with definitions in (2) and (3).

Proposition 4.4. Let ai, bi, b′

i > 0 for i ∈ {1, . . . , n}. If X = (X1, . . . , Xn) has the MRIGn distribution P(a; b,W ), if
Y = (Y1, . . . , Yn) such that Yi ∼ IG(ai, b′

i) with independent components, and if X and Y are independent, then

X + Y = (X1 + Y1, . . . , Xn + Yn) ∼ P(a; b + b′,W ).

Proof. Compute the Laplace transform, using Proposition 4.1 and (2). □

4.5. Questions

Here are some unsolved problems linked to MRIGn laws:

• If X ∼ P(a; b,W ) what is the distribution of M−1
X ? This random matrix is concentrated on a manifold of dimension

n. This is a natural question since in one dimension if X ∼ RIG(a, b) then the distribution of 1/X is known and is
IG(b/2, 2a). However the Laplace transform of M−1

X , namely L(s) = E(e−tr (sM−1
X )) defined when s is a positive definite

matrix of order n is not known in general. If b = 0 then X has an STZn distribution and Theorem 2.2 shows that L(s)
is known for s of rank one.

• Since in one dimension IG and RIG distributions are particular cases of the generalized inverse Gaussian laws, the
natural extension of the MRIGn laws is to consider the probability densities on Rn proportional to

e−
1
2 a⊤Mxa− 1

2 b⊤M−1
x b(detMx)q−11CW (x) (36)

extending our familiar MRIGn integral from 1/2 to an arbitrary real number q. But the corresponding integral
extending Theorem 2.2 is untractable. However, in a particular case, namely if b = 0 and if the graph G associated
to W is a tree, Proposition 5.1 computes the integral on CW of the function (36). A related distribution has been
analysed in Massam and Wesołowski [11] in connection with a multivariate version of the Matsumoto–Yor property
(see e.g. Matsumoto and Yor [13], Letac and Wesołowski [10] and Massam and Wesołowski [12]).

• Probabilistic interpretations of the one dimensional laws IG and RIG are known, as hitting time and time of last visit
of an interval [a, ∞) by a drifted Brownian motion t ↦→ mt + B(t) (in the respective cases m > 0 and m < 0). How
to extend this to MRIGn laws? An answer to this problem is given in Sabot and Zeng [17] but one may look for other
interpretations.

5. Another generalization of the Sabot–Tarrès–Zeng integral: the case of a tree

In this section we consider another generalization of a specialization of the Sabot–Tarrès–Zeng integral (1): we assume
that the graph G associated to W is a tree but we replace in (1) the power −1/2 of detMx by the real number q−1 > −1.
Furthermore in Proposition 5.2, we are able to drop the restriction wij ≥ 0 that we have done all along the paper, because
of the following proposition of linear algebra:

Proposition 5.1. Let M = (mij)1≤i,j≤n be a symmetric matrix and let

E = {(i, j); 1 ≤ i < j ≤ n, mij ̸= 0}.

Assume that G is a graph with set of vertices {1, . . . , n} and with E as set of edges. Then
(i) If G is a tree or a forest, detM is a polynomial in (mii)ni=1 and in (m2

ij)(i,j)∈E;
(ii) if G is a tree or a forest, if M is positive definite and if (ϵij)1≤i,j≤n is a symmetric matrix such that ϵij = ±1 and ϵii = 1

for all i, j then the symmetric matrix (ϵijmij)1≤i,j≤n is also positive definite;
(iii) if the graph has a cycle then detM is a sum of monomials such that at least one of them contains an odd power of

some mij with i, j ∈ E.

Comments. In general, changing the two off-diagonal entries mij and mji of a positive definite matrix M into −mij and
−mji creates a new symmetric matrix which can be not positive definite anymore. The proposition shows that this is not
the case when the graph associated to M is a tree. Part 3 shows that the fact that detM is a polynomial in (m2

ij)I,J ∈ E
characterizes the fact that the graph is a tree or a forest.

Proof. We prove (i) by induction on n. The result is clear when n = 1 and n = 2. Suppose that it is true for n and consider
the case of a symmetric matrix M1 of order n + 1 such that its associated graph G1 is a tree. Without loss of generality,
we may assume that n + 1 has only one neighbour in the tree and that this neighbour is n. This implies that M1 has the
form

M1 =

[
M v

v⊤ mn+1,n+1

]
, v⊤

= (0, . . . , 0,mn+1,n),
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where the symmetric matrix M of order n is associated to the graph G which is G1 minus the vertex n + 1. Since n + 1
had n as the only neighbour, G is also a tree. Write also

M =

[
M−1 v−1
v⊤

−1 mn,n

]
,

where M−1 is symmetric of order n − 1. Assume that mn+1,n+1 ̸= 0 and denote c = m2
n+1,n/mn+1,n+1 and

M ′
=

[
M−1 v−1
v⊤

−1 mn,n − c

]
.

Therefore we get that

detM1 = mn+1,n+1 detM ′.

Since M ′ is symmetric and since its associated graph is the tree G, the induction hypothesis implies that detM ′ is a
polynomial with respect to the squares of the mij with 1 ≤ i < j ≤ n where (i, j) is an edge of G. Also, detM ′ is an affine
function of c . Since c is a multiple of m2

n+1,n, therefore the extension of the induction hypothesis to n + 1 is done when
mn+1,n+1 ̸= 0. The extension to the case mn+1,n+1 = 0 is done by continuity of the polynomial detM1.

For showing (ii) we now apply (i) to the case where M is positive definite and we assume without loss of generality
that G is a tree. We number its vertices {1, . . . , n} such that if Gk is the graph associated to the restriction Mk of M to
{1, . . . , k}2, then Gk is a tree, a point which can be proved by induction. Denote Mk(ϵ) = (ϵijmij)1≤i,j≤k. Since Gk is a tree and
since M is positive definite, then det(Mk(ϵ)) > 0. From the theorem of principal determinants, Mn(ϵ) is positive definite.

For showing (iii) we assume first that G contains the cycle 1 − 2 − · · · − n − 1. We choose mij = 0 if |i − j| ̸= 1m12 =

m21 = a and mi,j = 1 for the other edges of the cycle. With this choice the matrix M is

Mn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a 0 0 · · · 0 1
a 0 1 0 · · · 0 0
0 1 0 1 · · · 0 0
0 0 1 0 · · · 0 0

· · · · · · · · · · · ·
. . . · · · · · ·

0 0 0 0 · · · 0 1
1 0 0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Standard techniques show that detMn = detMn+4 for n ≥ 3 and that

detM3 = detM5 = 2a, detM4 = (a − 1)2, detM6 = −(a + 1)2.

Therefore one of the monomials is ±2a: this odd power is the one which was announced and this ends the proof of
Proposition 5.1. □

For stating Proposition 5.2 we need to introduce the MacDonald function on (0, ∞) :

Kq(x) =
1
2

∫
∞

0
uq−1e−

1
2 x(u+ 1

u )du.

It is useful to display a property of this integral

2
(
b
a

)q

Kq(2ab) =

∫
∞

0
vq−1e−a2v−

b2
v dv. (37)

We denote by s(i) the number of neighbours of i in the tree, namely the size of {j : wij > 0}.

Proposition 5.2. Let W = (wij)1≤i,j≤j be a symmetric matrix with zero diagonal such that its associated graph G is a tree. Let
Mx = 2 diag(x1, . . . , xn) − W and let CW be the set of x’s such that Mx is positive definite. If q > 0 then∫

CW

e−
1
2 a⊤Mxa(detMx)q−1dx = 2q−1Γ (q)e

1
2 a⊤Wa

n∏
i=1

aq(s(i)−2)
i

∏
i<j

|wij|
qKq(aiaj|wij|). (38)

Comments.

• For y1, . . . , yn > 0 another presentation of (38) is∫
CW

e−⟨x,y⟩(detMx)q−1dx = 2q−1Γ (q)
n∏

i=1

y
1
2 q(s(i)−2)
i

∏
i<j

w
q
ijKq(

√
yiyjwij).
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• Of course, inserting q = 1/2 gives back the Sabot–Tarrès–Zeng-integral in the case where G is a tree. To check this
we use Lemma 2.1 which says

K1/2(x) =

√
π
2x e

−x, x > 0.

For q = 3/2 we use Watson [19] page 90 formula 12 for getting

K3/2(x) =

√
π
2x e

−x
(
1 +

1
x

)
, x > 0,

and we obtain∫
CW

e−
1
2 a⊤Mxa

√
detMxdx =

(π

2

)n/2 n∏
i=1

a−3
i

∏
i<j

(1 + aiajwij).

• We give a proof of Proposition 5.1, while another proof could be extracted from Massam and Wesołowski [11], where
the authors consider the NEF generated by the unbounded measure

1CW (x)(detMx)q−1dx

and independence properties of distributions from this NEF. Bobecka [5] has a multivariate generalization.

Proof. We proceed by induction on n. This is correct for n = 1 since in this case s(1) = 0 and since the empty product∏
i<j is one. Suppose that the formula (38) is true for n and let us extend it to n + 1. We use the same notation as in

Section 2.2: we keep the notations a, W and Mx for the matrices of order n as before and we consider the block matrices
M1 and W 1 defined by (8). We now use a different factorization of M1 by writing

M1
=

[
In −

c
2xn+1

0 1

][
Mx −

cc⊤
2xn+1

0
0 2xn+1

][
In 0

−
c⊤

2xn+1
1

]
. (39)

Since the graph G1 which is associated to W 1 is a tree, without loss of generality we assume that the vertex n + 1 has
only one neighbour which is n. In other terms, we may assume that the vector c of Rn has the form

c = (0, . . . , 0, wn,n+1)⊤.

This choice implies also that the graph G associated to W is still a tree. Formula (39) implies that CW1 is the set of
(x, xn+1) ∈ Rn+1 such that xn+1 > 0 and such that the diagonal y of the matrix

My = Mx −
cc⊤

2xn+1
= Mx −

[
0 0

0
w2
n,n+1

2xn+1

]
,

namely y = (x1, . . . , xn−1, xn −
w2
n,n+1

4xn+1
)⊤, belongs to CW . The Jacobian of the transformation (x, xn+1) ↦→ (y, xn+1) is one.

Therefore we can write∫
CW1

e−
1
2 a⊤Mxa+a⊤can+1−a2n+1xn+1 (detM1)q−1dxdxn+1

= ea
⊤can+1

∫
CW1

e
−

1
2 a⊤(Mx−

cc⊤
2xn+1

)a− (c⊤a)2
4xn+1

−a2n+1xn+1 det(Mx −
cc⊤

2xn+1
)q−1(2xn+1)q−1dxdxn+1

=

(∫
CW

e−
1
2 a⊤Mya(detMy)q−1dy

)
×

(
ea

⊤can+1

∫
∞

0
e
−

(c⊤a)2
4xn+1

−a2n+1xn+1 (2xn+1)q−1dxn+1

)
.

The latter integral is expressed with (37) as

e|wn,n+1|anan+1
aqn

aqn+1
|wn,n+1|

qKq(anan+1|wn,n+1|),

and the former one is (38), from the induction hypothesis. To conclude, observe that the number of neighbours of n + 1
in G1 is one, and that the number of neighbours of n in G1 is the number s(n) of neighbours of n in G plus one. □

6. If B ∼ N (0,Mx) what is Pr(B1 > 0, . . . ,Bn > 0)?

Of course the exact solution of this question cannot be found. However for any x ∈ CW denote by

f (x) = Pr(B1 > 0, . . . , Bn > 0).
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Then formula (23) enables us to compute the Laplace transform of f (x)1CW (x). The trick is to observe that the first member
of (23) involves the density gx(b) of N(0,Mx) when the b1, . . . , bn are restricted to be > 0. Of course f (x) =

∫
Rn

+

gx(b)db,
and b ↦→ gx(b)/f (x) is a probability density on Rn

+
.

One can even get a knowledge of the Laplace transform of b ↦→ gx(b). More specifically

Proposition 6.1. For θ = (θ1, . . . , θn) ∈ Rn
+
and x ∈ CW , denote

∫
Rn

+

e−⟨θ,b⟩gx(b)db = f (x, θ ). Then for y = (y1, . . . , yn) ∈ Rn
+

we have∫
CW

e−⟨x,y⟩f (x, θ )dx =
1

2n
√
y1(y1 + θ1) . . .

√
yn(yn + θn)

e−
1
2
∑n

i,j=1 wij
√yiyj . (40)

In particular∫
CW

e−⟨x,y⟩f (x)dx =
1

2ny1 × · · · × yn
e−

1
2
∑n

i,j=1 wij
√yiyj .

Proof. Enough is to multiply both sides of (23) by e−⟨θ,b⟩ and integrate with respect to b on Rn
+
. Permuting the integrations

on the left hand side leads to (40). □

Corollary 6.2.

f (x) =
1

(2π )n/2

∫
CW∩{t≤x}

dt
√
(x1 − t1) . . . (xn − tn)

√
detMt

. (41)

Proof. Denote

h(x) =
1

πn/2(x1 × · · · × xn)1/2
1Rn

+
(x), g(x) =

1
(2π )n/2

1
√
detMx

1CW (x).

Consider the Laplace transforms Lf (y), Lg (y), Lh(y) defined for y1, . . . , yn > 0. They are respectively given by (40) with
θ = 0, by the Sabot–Tarrès–Zeng integral (1) and by∫

Rn
+

e−⟨x,y⟩h(x) =
1

√
y1 × · · · × yn

.

As a consequence Lf = LgLh which implies that f is the convolution product of g and h and proves (41). □

Corollary 6.3. With the notation Dy = diag(y1, . . . , yn) and y = M−1
x b, where b = (1, . . . , 1)⊤, we have

f (x) =
1

(2π )n/2
√
y1 × · · · × yn

∫
(0,∞)n

(
det(D−1

u+y + LW )∏n
i=1(ui(ui + yi))

)1/2

du1 . . . dun (42)

with the Laplacian LW defined in (13).

Proof. In (41) we make the change of variable introduced in Lemma 2.4, namely s = M−1
t b. We also observe that again

from Lemma 2.4 it follows that Mx − Mt = Db(D−1
y − D−1

s ) and that

n∏
i=1

(xi − ti) =
1
2n det(Mx − Mt ) =

1
2n detDb(D−1

y − D−1
s ) =

1
2n

n∏
i=1

bi
si − yi
siyi

.

Using the fact that b = (1, . . . , 1)⊤ we get

f (x) =
1

(2π )n/2

∫
∞

y1

. . .

∫
∞

yn

(
det(D−1

s + LW )
n∏

i=1

yi
si(si − yi)

)1/2

ds1 . . . dsn.

Hence the change of variables: ui = si − yi, i ∈ {1, . . . , n}, yields (42). □

Comments.

• Applying formula (41) even to the case n = 2 is surprising, since the left hand side is explicitly known: recall that if

(X1, X2) ∼ N
(
0,
[

1 − cosα

− cosα 1

])
⇒ Pr(X1 > 0, X2 > 0) =

α

2π
.
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Therefore, if Mx =

[
2x1 −w

−w 2x2

]
formula (41) gives the following double integral on the domain D = {(t1, t2), t1 <

x1, t2 < x2, w < 2
√
t1t2}:

arccos
w

2
√
x1x2

=

∫
D

dt1dt2√
(x1 − t1)(x2 − t2)(4t1t2 − w2)

,

an identity not so easy to check directly.
• Some comments about tentative applications to Bayesian analysis of MRIGn are in order. Recall that a positive matrix

A = ρIn − C is called a M-matrix if C = (cij)1≤i,j≤n is such that cij ≥ 0 for all i, j. Of course with our usual notation
and for x ∈ CW then Mx is a M-matrix: we have just to define cij = wij for i ̸= j, ρ = maxi 2xi and cii = ρ − 2xi for
seeing this fact. The M-matrices are widely used in statistics since for X ∼ N(0, Σ) then the density g(x) of X has
the MTP2 property, namely for all x, y ∈ Rn

g(min(x1, y1) . . . ,min(xn, yn))g(max(x1, y1) . . . ,max(xn, yn)) ≥ g(x)g(y)

if and only if Σ−1 is a M-matrix: we refer for instance to Karlin and Rinott [9] Page 482 for this fact. In Theorem
3 of the same paper it is proved that for X ∼ N(0, Σ) and for all i, j the covariance of Xi, Xj conditioned by
{Xk; 1 ≤ k ≤ n, k ̸= i, j} is non negative if and only if Σ−1 is a M-matrix. From the point of view of Bayesian
analysis two types of Gaussian models come to mind

1. {N(0,M−1
θ ) ; θ ∈ CW }. If X ∼ N(0,M−1

θ ) its density is

1
(2π )n/2

e−
1
2 x

⊤Mθ x
√
detMθ .

The densities have the MTP2 property and the conditional covariances are all non negative. In order to use the
MRIGn integral one is tempted to consider the a priori measure

π (dθ ) = e−
1
2 b

⊤M−1
θ

b1CW (θ )
dθ

detMθ

,

which is unfortunately unbounded since x ↦→
∫
CW

N(0,Mθ )(x)π (dθ ) is an unbounded density. From (23) and
the last comment before the proof of Theorem 2.2, this density is proportional to

∏n
i=1 e

−ai|xi|/|xi|.
2. {N(0,Mθ ) ; θ ∈ CW }. If X ∼ N(0,Mθ ) its density is

1
(2π )n/2

e−
1
2 x

⊤M−1
θ

x 1
√
detMθ

.

These densities have less attractive properties from the MTP2 point of view. Nevertheless the a priori measure

π (dθ ) = e−(a21θ1+···+a2nθn)1CW (θ )dθ

is bounded. However a major defect of this choice is the fact that x ↦→
∫
CW

N(0,M−1
θ )(x)π (dθ ) is computable

(by (23)) only if x1, . . . , xn are all non negative (again, see example n = 2 in Section 3).

7. Continuity of the density of the MRIGn laws

Proposition 7.1. If b1, . . . , bn ≥ 0 with b ̸= 0 and if the graph associated to W is connected then the function

f (x) = e−
1
2 b⊤M−1

x b 1
√
detMx

1CW (x)

is continuous on Rn.

Proof. The continuity of f is clear outside of the boundary of CW , namely outside of the set ∂CW of x ∈ Rn such that Mx
is positive semidefinite with detMx = 0. In the sequel we fix x ∈ ∂CW and we prove the continuity of f at this point x.

First step. We show that if t = (t1, . . . , tn)⊤ ∈ Rn is such that Mxt = 0 and if ti0 > 0 for some i0, then ti > 0 for all
i = 1, . . . , n. To see this, we use the notation t+i = max(0, ti), t−i = t+i − ti and

t+ = (t+1 , . . . , t+n )⊤, t− = t+ − t.

Since 0 = Mxt = Mxt+ − Mxt− we multiply by (t+)⊤ on the left for getting (t+)⊤Mxt+ = (t+)⊤Mxt−. Since t+i t−i = 0 we
have that (t+)⊤Mxt− ≤ 0. Since Mx is positive semidefinite we have that (t+)⊤Mxt+ = 0 and therefore Mxt+ = 0. Without
loss of generality, assume that t+ = (t1, . . . , tk, 0, . . . , 0) with t1, . . . , tk > 0. Let us show that k = n. Since ti0 > 0 we
have k > 0. Suppose that k < n. We now split Mx in blocks

Mx =

[
A B
B⊤ C

]
,



18 G. Letac and J. Wesołowski / Journal of Multivariate Analysis 175 (2020) 104559

where A is a (k, k) matrix. Clearly since Mxt+ = 0 we get B⊤(t1, . . . , tk)⊤ = 0. Since it holds for all tj > 0 for j ∈ {1, . . . , k}
this implies that B = 0. This contradicts the fact that G is connected, and finally k = n.

Second step. We show that no principal minor of Mx of order n − 1 can be zero. Suppose for instance that the cofactor
Ci0 (x) of 2xi0 is zero. This implies that there exists a non-zero t ∈ Rn such that Mxt = 0 and ti0 = 0. From the first step,
this is impossible.

Third step. Consider a sequence (xk)∞k=1 in CW converging to x and let us show that f (xk) converges to zero. This is
equivalent to show that

Ek = b⊤M−1
xk b + log detMxk → ∞.

Recall that we have assumed that there exists i0 such that bi0 > 0. Recall also that all coefficients of M−1
xk are non-negative.

As a consequence

Ek ≥ b2i0Ci0 (xk)
1

detMxk
+ log detMxk .

As polynomials in xk we have that Ci0 (xk) converges to Ci0 (x) and detMxk converges to detMx. Since Ci0 (xk) > 0 from the
second step and since detMx = 0, we have shown that Ek tends to infinity and the proof is done. □
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