CALCULUS III Sample exercises (part II), 2012

Surface integrals of the second type

1. Applying Stokes' formula, transform the integrals:

(a)
$$\oint_C (x^2 - yz) \, dx + (y^2 - zx) \, dy + (z^2 - xy) \, dz;$$

(b) $\oint_C y \, dx + z \, dy + x \, dz;$

- 2. Applying Stokes' formula, find the given integrals and verify the results by direct calculations:
 - (a) $\oint_C (y+z) dx + (z+x) dy + (x+y) dz$, where C is the circle $x^2 + y^2 + z^2 = 4$, $x^2 + y + z = 0$;
 - (b) $\oint_C (y-z) dx + (z-x) dy + (x-y) dz$, where C is the ellipse $x^2 + y^2 = 1$, $C = x^2 + z = 1$;
 - (c) $\oint_C x \, dx + (x+y) \, dy + (x+y+z) \, dz$, where C is the curve $x = 2 \sin t$, $y = 2 \cos t$, $z = 2(\sin t + \cos t) \ (0 \le t \le 2\pi);$
 - (d) $\oint_{ABCA} y^2 dx + z^2 dy + x^2 dz$, where ABCA is the contour of the triangle ABC with vertices A(a, 0, 0), B(0, a, 0), C(0, 0, a);

(answer: (a) 0; (b) 4π ; (c) $-\pi a^2$; (d) $-a^3$)

- 3. Using Stokes' theorem compute the circulation (the work of the vector field) of the vector $a = x^2 y^3 \vec{i} + \vec{j} + z\vec{k}$ along the circumference $x^2 + y^2 = R^2$, z = 0, taking the hemisphere $z = \sqrt{R^2 x^2 y^2}$ for the surface.
- 4. Applying the Ostrogradsky-Gauss formula, transform the following surface integrals over the closed surfaces S bounding the volume $V(\cos \alpha, \cos \beta, \cos \gamma \text{ are direction cosines of the outer normal to the surface S}):$

(a)
$$\iint_{S} xy dx dy + yz dy dz + zx dz dx;$$

(b)
$$\iint_{S} \frac{x \cos \alpha + y \cos \beta + z \cos \gamma}{\sqrt{x^2 + y^2 + z^2}} dS$$

- 5. Using the Ostrogradsky-Gauss formula, compute the following surface integrals:
 - (a) $\iint_{S} z^2 dx dy + x^2 dy dz + y^2 dz dx$, where S is the external side of the surface of the cube $0 \le x \le 2, 0 \le y \le 2, 0 \le z \le 2$;
 - (b) $\iint_{S} z \, dx \, dy + x \, dy \, dz + y \, dz \, dx$, where S is the external side of a pyramid bounded by the surfaces x + y + z = 3, x = 0, y = 0, z = 0;
 - (c) $\iint_{S} z^{3} dx dy + x^{3} dy dz + y^{3} dz dx$, where S is the external side of the sphere $x^{2} + y^{2} + z^{2} = 9;$

(answer: (a) 48; (b) $\frac{27}{2}$; (c) $\frac{12}{5}\pi 3^5$)

- 6. Find the flux of the vector
 - (a) $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ through the total surface of the cylinder $x^2 + y^2 \le 1, 0 \le z \le 2$; (b) $\vec{z} = x\vec{i} + y\vec{j} + z\vec{k}$ through
 - (b) $\vec{r} = x^3 \vec{i} + y^3 \vec{j} + z^3 \vec{k}$ through
 - the lateral surface of the cone $4(x^2 + y^2) \le z^2, \ 0 \le z \le 2$,
 - the total surface of the cone.

(answer: (a) 6π ; (b) $\frac{11}{5}\pi$, $\frac{27}{5}\pi$)

- 7. Evaluate div $\left(\frac{\vec{r}}{\|r\|_2}\right)$, where $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ and $\|r\|_2$ is the Euclidean norm of \vec{r} , i.e. $\|r\|_2 = \sqrt{x^2 + y^2 + z^2}$.
- 8. Evaluate the divergence and the rotation of the vector:
 - (a) \vec{r} , where $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$,
 - (b) $f(r)\vec{c}$, where $r = \sqrt{x^2 + y^2 + z^2}$ and \vec{c} is a constant vector.
- 9. Compute $\operatorname{div}(\operatorname{grad} U)$.
- 10. Compute rot(gradU) and div(rota).(answer: 0; 0)
- 11. Compute length and direction of the vector $\operatorname{rot}\vec{a}$ at the point (1,2,-2), where $\vec{a} = \frac{y}{z}\vec{i} + \frac{z}{x}\vec{j} + \frac{x}{y}\vec{k}$.

Series

- 12. Expand the following functions in positive integral powers of x, find the intervals of convergence of the resulting series and investigate the behaviour of their remainders:
 - (a) $a^x (a > 0)$,
 - (b) $\sin(x + \frac{\pi}{4})$,
 - (c) $\cos x$,
 - (d) $\sin^2 x$.
- 13. Expand the following functions in positive integral powers of x and indicate the intervals of convergence of the resulting series:
 - (a) $\frac{2x-3}{(x-1)^2}$, (b) e^{x^2} , (c) $\sinh x$, (d) $\cos 2x$, (c) 1+x
 - (e) $\ln \frac{1+x}{1-x}$ (f) $(1+e^x)^3$, (g) $\sqrt[3]{8+x}$.

(answers: intervals of convergence: (a) |x| < 1; (b) $-\infty < x < \infty$; (c) $-\infty < x < \infty$; (e) |x| < 1; (f) $-\infty < x < \infty$; (g) $-\infty < x < \infty$)

- 14. Write the first three nonzero terms of the expansion of the following functions in powers of x:
 - (a) $\tan x$,
 - (b) $\tanh x$,
 - (c) $e^{\cos x}$.
- 15. Expand the function $x^3 2x^2 5x 2$ in a series of powers of x + 4.
- 16. Expand the function $\ln x$ in a series of powers of x 1.
- 17. What is the magnitude of the error if we put approximately

$$e \approx 2 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!}?$$

(answer: $|E| < \frac{e}{5!} < \frac{1}{40}$)

18. To what degree of accuracy will we calculate the number $\frac{\pi}{4}$, if we make use of the series

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots,$$

by taking the sum of its first five terms when x = 1? (answer: $|E| < \frac{1}{11}$)

19. How many terms do we have to take of the series

$$\cos x = 1 - \frac{x^2}{2!} + \dots$$

in order to calculate cos 18° to three decimal places? (answer: two terms)

20. Calculate $\sqrt[3]{7}$ to two decimals by expanding the function $\sqrt[3]{8+x}$ in a series of powers of x.

(answer: 1.92)

- 21. Evaluate $\int_{0}^{1/2} \frac{\sin x}{x} dx$ to four decimals. (answer: $\frac{1}{2} - \frac{1}{2^3 \cdot 3 \cdot 3!} \approx 0.4931$) 22. Evaluate $\int_{0}^{1} e^{-x^2} dx$ to four decimals.
- 22. Evaluate $\int_0^{\infty} e^{-x^2} dx$ to four decimals (answer: 0.7468)
- 23. Expand the following functions in a Fourier series in the interval $(-\pi, \pi)$, determine the sum of the series at the points of discontinuity and at the end-points of the interval:

(a)
$$f(x) = \begin{cases} -1 & \text{when } -\pi < x \le 0, \\ 1 & \text{when } 0 < x \le \pi; \end{cases}$$

(b) $f(x) = x^2;$
(c) $f(x) = \sin ax, \ a \in \mathbb{R}.$

24. Expand the function $f(x) = x^2$, in the interval $(0, \pi)$, into incomplete Fourier series: a) of sines of multiple arcs, b) of cosines of multiple arcs. Find the sums of the following number series by means of the expansion obtained:

(a)
$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots;$$

(b) $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$

- 25. Expand the function $f(x) = \begin{cases} x & \text{when } 0 < x \leq \frac{\pi}{2}, \\ 0 & \text{when } \frac{\pi}{2} < x < \pi; \end{cases}$, in the interval $(0, \pi)$, in sines of multiple arcs.
- 26. Expand the following functions, in the indicated intervals, in incomplete Fourier series: a) in sines of multiple arcs, b) in cosines of multiple arcs:
 - (a) $f(x) = 1, x \in [0, 1];$
 - (b) $f(x) = x, x \in [0, a];$
 - (c) $f(x) = x^2$, $x \in [0, 2\pi]$.