CALCULUS III

Sample exercises (part I), 2013

Line integrals

- 1. Evaluate the following integrals:
 - (a) $\int_C (x+y) ds$, where C is a triangle with vertices A(0,0), B(1,0), C(0,1),
 - (b) $\int_C (x^2+y^2) ds$, where C is given by $x = \cos t + t \sin t$, $y = \sin t t \cos t$, $t \in [0, 2\pi]$,
 - (c) $\int_C \sqrt{x^2 + y^2} \, ds$, where C is the contour $x^2 + y^2 = 2x$,
 - (d) $\int_C (x^2 + y^2 + z^2) ds$, where C is given by $x = \cos t$, $y = \sin t$, z = t, $t \in [0, 2\pi]$,
 - (e) $\int_C x^2 ds$, where C is a circle given by intersection of $x^2 + y^2 + z^2 = 1$ with $x^2 + y + z = 0$,
 - (f) $\int_C \frac{ds}{y^2}$, where C is given by $y = \cosh x, x \in \mathbb{R}$,
 - (g) $\int_C z \, ds$, where C is a circle given by intersection of $x^2 + y^2 = z^2$ with $y^2 = x$ from the point O(0,0,0) to the point $A(1,1,\sqrt{2})$,
 - (h) $\int_C xy \, ds$, where C is the contour of the square $|x| + |y| = a \ (a > 0)$,
 - (i) $\int_{C} x \, ds$, where C is the arc of the logarithmic spiral $r = ae^{k\varphi}$, (k > 0), which lies inside the circle $r \le a$,
 - (j) $\int_{C} \frac{ds}{x^2+y^2+z^2}$, where C is the first turn of the screw-line $x = a \cos t$, $y = a \sin t$, z = bt.

(answers: a) $1 + \sqrt{2}$; b) $2\pi^2(1 + 2\pi^2)$; c) 8; d) $\frac{2}{3}\pi(3 + 4\pi^2)\sqrt{2}$; e) $\frac{2}{3}\pi$; f) π ; g) $\frac{1}{256\sqrt{2}}(100\sqrt{38} - 72 - 17\log\frac{25+4\sqrt{38}}{17})$; h) 0; i) $\frac{2ka^2\sqrt{1+k^2}}{1+4k^2}$; j) $\frac{\sqrt{a^2+b^2}}{ab}\arctan\frac{2\pi b}{a}$)

- 2. Find a mass of
 - (a) the first turn of the screw-line $x = \cos t$, $y = \sin t$, z = 3t, whose density at a point (x, y, z) equals $x^2 + y^2 + z^2$,
 - (b) a curve $x = 2\cos t$, $y = 2\sin t$, $t \in [0, 2\pi]$, whose density at a point (x, y) equals |x|,
 - (c) a curve x = at, $y = \frac{1}{2}at^2$, $z = \frac{1}{3}at^3$, a > 0, $t \in [0, 1]$, whose density at a point (x, y, z) equals $\sqrt{\frac{2y}{a}}$,
 - (d) an arc of a parabola $y^2 = 2px$ ($x \in [0, p/2]$), whose density at a point (x, y) equals |y|.

- 3. Calculate the following integrals:
 - (a) $\int_{C} (x^2 2xy) dx + (y^2 2xy) dy$, where C is the parabola $y = x^2, -1 \le x \le 1$,
 - (b) $\int_C (x^2 + y^2) dx + (x^2 y^2) dy$, where C is defined as $y = 1 |x 1|, 0 \le x \le 2$,
 - (c) $\oint_C (x+y) dx (x-y) dy$, where C is the circle $x^2 + y^2 = 2y + 1$ with counterclockwise orientation,
 - (d) $\oint_C \frac{(x+y)dx (x-y)dy}{x^2 + y^2}$, where C is the circle $x^2 + y^2 = 2y + 1$ with counterclockwise orientation,
 - (e) $\int_{C} y^2 dx + x^2 dy$, where C is the upper half of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ traced clockwise,
 - (f) $\int_C (y-z) dx + (z-x) dy + (x-y) dz$, where C is a turn of the screw-line $x = 2\cos t, y = 2\sin t, z = 3t$,
 - (g) $\int_{C} (y^2 z^2) dx + 2yz dy x^2 dz$, where C is a curve x = t, $y = t^2$, $z = t^3$, $(0 \le t \le 1)$, which runs in the direction of increasing parameter t, (answer: $\frac{1}{35}$)
 - (h) $\oint_C (y^2 z^2) dx + (z^2 x^2) dy + (x^2 y^2) dz$, where C is a boundary of the part of the sphere $x^2 + y^2 + z^2 = 1$, $x \ge 0$, $y \ge 0$, $z \ge 0$, oriented so that the inner side of the surface is to the left of C. (answer: -4)
- 4. Find the potential function of a force F = (X, Y, Z) and determine the work done by the force over a given path if:
 - (a) X = 0, Y = 0, Z = -mg (force of gravity) and the material point is moved from position A(x₁, y₁, z₁) to position B(x₂, y₂, z₂),
 (answer: potential: U = mgz, work: mg(z_l z₂))
 - (b) $X = -\frac{\mu x}{r^3}$, $Y = -\frac{\mu y}{r^3}$, $Z = -\frac{\mu z}{r^3}$, where $\mu = \text{const}$ and $r = \sqrt{x^2 + y^2 + z^2}$ (Newton attractive force) and the material point moves from position A(a, b, c) to infinity,

(answer: potential: $U = \frac{\mu}{r}$, work: $\frac{\mu}{\sqrt{a^2 + b^2 + c^2}}$)

(c) $X = -k^2 x$, $Y = -k^2 y$, $Z = -k^2 z$, where k = const (elastic force), and the initial point of the path is located on the sphere $x^2 + y^2 + z^2 = R^2$, while the terminal point is located on the sphere $x^2 + y^2 + z^2 = r^2$, R > r. (answer: potential: $U = -\frac{k^2}{2}(x^2 + y^2 + z^2)$, work: $\frac{k^2}{2}(R^2 - r^2)$) 5. Show that the integrand functions are total differentials, find the antiderivative and compute integrals:

(a)
$$\int_{(0,1)}^{(2,3)} (x+y) dx + (x-y) dy,$$

(b) $\int_{(0,1)}^{(3,-4)} x dx + y dy,$
(c) $\int_{(2,1)}^{(1,2)} \frac{y dx - x dy}{x^2},$ along a curve which does not intersect the *y*-axis,
(d) $\int_{(0,0)}^{(a,b)} e^x (\cos y \, dx + \sin y \, dy).$

6. Show that the integrand functions are total differentials and compute integrals:

(a)
$$\int_{(1,1,1)}^{(2,3,-4)} x \, dx + y^2 \, dy - z^3 \, dz,$$

(b)
$$\int_{(1,1,1)}^{(a,b,c)} yz \, dx + zx \, dy + xy \, dz,$$

(c)
$$\int_{(0,0,0)}^{(3,4,5)} \frac{x \, dx + y \, dy + z \, dz}{\sqrt{x^2 + y^2 + z^2}},$$

(d)
$$\int_{(1,1,1)}^{(x,y,\frac{1}{xy})} \frac{yz \, dx + zx \, dy + xy \, dz}{xyz}.$$

7. Show that the integrand functions are total differentials and find the antiderivative function U if:

(a)
$$dU = (x^2 + 2xy - y^2)dx + (x^2 - 2xy - y^2)dy$$
,
(b) $dU = \frac{y \, dx - x \, dy}{3x^2 - 2xy + 3y^2}$,
(c) $dU = (2x + 3y)dx + (3x - 4y)dy$,
(d) $dU = e^{x-y} [(1 + x + y)dx + (1 - x - y)dy]$,
(e) $dU = \frac{dx}{x+y} + \frac{dy}{x+y}$.

8. Show that the integrand functions are total differentials and find the antiderivative function U if:

(a)
$$dU = \frac{x \, dx + y \, dy + z \, dz}{\sqrt{x^2 + y^2 + z^2}},$$

(b) $dU = (x^2 - 2yz) \, dx + (y^2 - 2xz) \, dy + (z^2 - 2xy) \, dz.$

- 9. Using Green's theorem find the areas of figures bounded by the following curves:
 - (a) the ellipse $x = a \cos t$, $y = b \sin t$,
 - (b) the asteroid $x = a \cos^3 t$, $y = b \sin^3 t$,
 - (c) the curve $(x+y)^2 = axy$,
 - (d) the cardioid $x = a(2\cos t \cos 2t), y = a(2\sin t \sin 2t).$

10. Use Green's theorem to compute:

- (a) $\oint_C xy^2 dx x^2 y dy$, where C is a circle $x^2 + y^2 = a^2$,
- (b) $\oint_C 2(x^2 + y^2)dx + (x + y)^2 dy$, where C is the contour of the triangle (traced in the positive direction) with vertices at the points A(1,1), B(2,2), and C(1,3); verify the result obtained by computing the integral directly,
- (c) $\oint_C 2(x+y)^2 dx (x^2+y^2) dy$, where C is the boundary of the triangle (traced in the negative direction) with vertices at the points A(1,1), B(3,2), and C(2,5),
- (d) $\oint_C 2xy^3 dx + 4x^2y^2 dy$, where C is the boundary of the region enclosed by y = 0, $x = 1, y = x^3$, traced in the positive direction,
- (e) $\oint_C e^x((2-\cos y) dx (\sin y 2y) dy)$, where C is the contour bounding the region $0 \le x \le \pi, \ 0 \le y \le \sin x$, oriented clockwise,
- (f) $\int_{p(AO)} (e^x \sin y y) \, dx + (e^x \cos y 1) \, dy$, where p(AO) is the upper semicircle $x^2 + y^2 = 4x$ from the point A(4,0) to the point O(0,0). (*Hint: Close the curve* p(AO) with the line segment AO.)

Vector fields

- 11. Find out whether the given vector field \vec{F} has a potential U, and find U if the potential exists:
 - (a) $\vec{F} = (5x^2y 4xy)\vec{i} + (3x^2 2y)\vec{j}$, (b) $\vec{F} = yz\vec{i} + xz\vec{j} + xy\vec{k}$,
 - (c) $\vec{F} = (y+z)\vec{i} + (x+z)\vec{j} + (x+y)\vec{k}$.
- 12. Verity that a given vector field is potential and compute integrals:

(a)
$$\int_{(1,-1)}^{(1,1)} (x-y)(dx-dy),$$

(b) $\int_{(1,0)}^{(6,8)} \frac{x \, dx + y \, dy}{\sqrt{x^2 + y^2}},$

(c)
$$\int_{(1,2,3)}^{(6,1,1)} yz \, dx + xz \, dy + xy \, dz.$$

- 13. Verify that the following fields are gradient fields. Find the potential U and draw the streamlines perpendicular to the equipotentials U(x, y) = c.
 - (a) $\vec{F} = \vec{i} + 2\vec{j}$ (constant field), (b) $\vec{F} = x\vec{i} + \vec{j}$, (c) $\vec{F} = x\vec{i} + \vec{j}$, (d) $\vec{F} = \cos(x+y)\vec{i} + \cos(x+y)\vec{j}$, (e) $\vec{F} = x^{2}\vec{i} + y^{2}\vec{j}$, (f) $\vec{F} = \frac{1}{y}\vec{i} - \frac{x}{y^{2}}\vec{j}$.
- 14. Compute $\int \vec{F} \cdot d\vec{R}$ along the straight line $\vec{R} = t\vec{i} + t\vec{j}$ and the parabola $\vec{R} = t\vec{i} + t^2\vec{j}$ from (0,0) to (1,1). When \vec{F} is a gradient field, use its potential U(x,y).
 - (a) $\vec{F} = \vec{i} 2\vec{j}$, (b) $\vec{F} = 2xy^2\vec{i} + 2x^2y\vec{j}$, (c) $\vec{F} = y\vec{i} - x\vec{j}$,
 - (d) $\vec{F} = x^2 \vec{j}$.
- 15. Find the work in moving from (1,0) to (0,1). When \vec{F} is conservative, construct its potential U. Choose your own path when \vec{F} is not conservative.
 - (a) $\vec{F} = \vec{i} + y\vec{j}$, (b) $\vec{F} = y\vec{i} + \vec{j}$, (c) $\vec{F} = e^{y}\vec{i} + xe^{y}\vec{j}$, (d) $\vec{F} = -y^{2}\vec{i} + x^{2}\vec{j}$.

Surface integrals of the first type (unoriented)

16. Evaluate the following surface integrals of the first type

(a)
$$\iint_{S} (x^{2} + y^{2}) dS$$
, where S is the sphere $x^{2} + y^{2} + z^{2} = a^{2}$;
(answer: $\frac{8}{3}\pi a^{4}$)
(b)
$$\iint_{S} \sqrt{x^{2} + y^{2}} dS$$
, where S is the lateral surface of the cone $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{a^{2}} - \frac{z^{2}}{b^{2}} = 0$,
 $0 \le z \le b$;
(answer: $2\pi a^{2} \frac{\sqrt{a^{2} + b^{2}}}{3}$)

- (c) $\iint_{S} \frac{dS}{(1+x+y)^2}, \text{ where } S \text{ is the surface of the tetrahedron } x+y+z \leq 1, \\ x \geq 0, y \geq 0, z \geq 0; \\ (\text{answer: } \frac{3-\sqrt{3}}{2} + (\sqrt{3}-1)\ln 2) \\ \text{(d)} \iint_{S} zdS, \text{ where } S \text{ is the surface given as } x = u\cos v, y = u\sin v, z = v, \\ u \in [0,a], v \in [0,2\pi]. \\ (\text{answer: } \pi^2 (a\sqrt{1+a^2} + \ln(a+\sqrt{1+a^2}))) \\ \text{(b)}$
- 17. Find the mass of the surface of the cube $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$, if the surface density at the point M(x, y, z) is equal to xyz. (answer: $\frac{3}{4}$)
- 18. Determine the coordinates of the centre of gravity of a homogeneous parabolic envelope 3z = x² + y² (0 ≤ z ≤ 3).
 (answer: 25√5+1/10(5√5-1))
- 19. Find the moment of inertia of a part of the lateral surface of the cone $z = \sqrt{x^2 + y^2}$ ($0 \le z \le h$) about the z-axis. (answer: $\frac{\pi^2\sqrt{2}}{2}h^4$)
- 20. Compute static moments of a part of the plane x + y + z = a, $x \ge 0$, $y \ge 0$, $z \ge 0$, with respect to planes xy, yz, zx. (answer: $\frac{a^3}{2\sqrt{3}}$)

21. Compute
$$\iint_{x+y+z=t} f(x,y,z) dS$$
, where

$$f(x,y,z) = \begin{cases} 1 - x^2 - y^2 - z^2 & \text{if } x^2 + y^2 + z^2 \le 1, \\ 0 & \text{if } x^2 + y^2 + z^2 > 1. \end{cases}$$

(answer: $\frac{\pi}{18}(3-t^2)^2$ for $|t| \le \sqrt{3}$; 0 for $|t| > \sqrt{3}$)

Surface integrals of the second type

- 22. Evaluate the following surface integrals of the second type
 - (a) $\iint_{S} yz dy dz + xz dz dx + xy dx dy$, where S is the external side of the surface of a tetrahedron bounded by the planes x = 0, z = 0, x + y + z = a;

(b)
$$\iint_{S} z \, dx \, dy$$
, where S is the external side of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1;$

(c) $\iint_{S} z^{2} dx dy + x^{2} dy dz + y^{2} dz dx, \text{ where } S \text{ is the external side of the hemisphere}$ $x^{2} + y^{2} + z^{2} = a^{2} \ (z \ge 0);$

(answer: (a) 0; (b) $\frac{4}{3}\pi abc$; (c) $\frac{\pi a^4}{2}$)