- 1. Find an ordinary differential equation satisfied by any function of the form $y(x) = (x + C)^2$ where $C \in \mathbf{R}$.
- 2. Do the same as above for:

 $y(x) = x^2 + C;$ $y(x) = x^2 + Cx + D;$ $y(x) = Cx^2;$ $y(x) = x^2 + Cx.$

- 3. Assuming that $x \cdot y'(x) y(x) = x^2$, write the differential equation satisfied by z(x) = y(x)/x. Solve that equation for z(x), and deduce what is y(x).
- 4. Assuming that $x^2 \cdot y''(x) 2x \cdot y'(x) + 2y(x) = 0$, write the differential equation satisfied by z(x) = y(x)/x. Solve that equation for z(x), and deduce what is y(x).