
On recursive sequences

1. Homogeneous linear equations

We consider the following equation:

an+k + ck−1an+k−1 + . . .+ c1an+1 + c0an = 0

where ci are constant numbers.
That equation is satisfied by the geometric sequences an = rn if r is a root of the

characteristic polynomial

w(r) = rk + ck−1r
k−1 + . . .+ c1r + c0,

and all their linear combinations.

Ex. 1. Find all sequences satisfying an+2 = 5an+1 − 6an.

Solution. We have the equation an+2 − 5an+1 + 6an = 0 and the corresponding
characteristic polynomial r2 − 5r + 6 with roots 2 amd 3. We have special solutions
an = 2n i an = 3n and the general one an = C1 · 2n + C2 · 3n.

Let’s check the answer. If an = C12n + C23n then

an+1 = C12n+1 + C23n+1 = 2C12n + 3C23n

an+2 = C12n+2 + C23n+2 = 4C12n + 9C23n

an+2 − 5an+1 + 6an = 4C12n + 9C23n − 10C12n − 15C23n + 6C12n + 6C23n = 0,
because 4− 10 + 6 = 9− 15 + 6 = 0. Verified.

Ex. 2. Find all sequences satisfying an+2 = 2(an+1 − an).

Solution. The equation is an+2−2an+1 +2an = 0. The characteristic polynomial
is r2− 2r+ 2 with roots 1 + i and 1− i. We thus have special solutions an = (1 + i)n

and an = (1− i)n and the general one an = C1(1 + i)n + C2(1− i)n.

Remark. If you prefer a fully real answer you may use the trigonometric form of
complex numbers and de Moivre’s formula:

1± i =
√

2
(

cos π4 ± sin π4 · i
)

(1± i)n = (
√

2)n
(

cos nπ4 ± sin nπ4 · i
)

an = C1(1 + i)n + C2(1− i)n = (
√

2)n
(

(C1 + C2) cos nπ4 + i(C1 − C2) sin nπ4

)
,

which can be written as

an = D1 · (
√

2)n cos nπ4 +D2 · (
√

2)n sin nπ4 .
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Multiple roots are somewhat different.

Ex. 3. Find all sequences satisfying an+2 = 4(an+1 − an).

Solution. Here we have an+2−4an+1 + 4an = 0. The characteristic polynomial is
r2− 4r+ 4 = (r− 2)2 (r = 2 is a double root). In this case an = 2n is still a solution,
but the other1 one is an = n · 2n. The general solution is consequently

an = C1 · 2n + C2 · n2n.

2. Nonhomogeneous linear equations

Let us now consider equations of the type

an+k + ck−1an+k−1 + . . .+ c1an+1 + c0an = f(n),

where f depends on n, preferably as some combination of polynomials and exponen-
tial functions2.

Proposition. The general solution of a nonhomogeneous equation is the sum of
the general solution of the related homogeneous equation and a particular solution of
the nonhomogeneous equation (in short GSNE=GSHE+PSNE)

By particular solution (PSNE) we mean just any solution, usually the one that
is easy to find. Quite often the prediction method is used, which means that if
f(n) = Wk(n) · cn, where Wk is a given polynomial of degree k, then we predict
(except one subtle case, which will be addressed later) a solution in the similar form
an = Vk(n) · cn, where Vk is also a polynomial of degree k.

Ex. 4. Find all sequences satisfying an+2 − 5an+1 + 6an = 6 · 4n.

Solution. GSHE is, by the previous method, an = C1 ·2n +C2 ·3n, and PSNE will
by looked for in the form an = A · 4n (W is here the constant 6, that is a polynomial
of degree 0, so V is also predicted to be a constant). Let us now compute

an+2−5an+1 +6an = A·4n+2−5A·4n+1 +6A·4n = 16A·4n−20A·4n +6A·4n = 2A·4n.

The above expression should be equal to 6 · 4n, so we get 2A = 6, so A = 3. Finally
PSNE equals an = 3 · 4n, and the final answer is

(GSNE) an = C1 · 2n + C2 · 3n + 3 · 4n.

1if r = 2 were a triple root, we would also have the third special solution an = n2 · 2n etc.
2both because we rarely encounter more complicated functions in practical problems, and because

there exist so many functions that no method could conceivably cover all of them
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Ex. 5. Find all sequences satisfying an+2 − 5an+1 + 6an = 4n.

Solution. GSHE is still an = C1 · 2n + C2 · 3n, and PSNE will be predicted as
an = An + B (the degree of W is 1, so V is predicted as degree 1 polynomial; the
’invisible’ constant c is implicitly 1). Now

an+2− 5an+1 + 6an = A(n+ 2) +B− 5(A(n+ 1) +B) + 6(An+B) = 2An− 3A+ 2B.

We now have to find constants for which 2An − 3A + 2B = 4n. From 2A = 4 and
−3A+2B = 0 we immediately see that A = 2, B = 3. PSNE is therefore an = 2n+3,
and the final answer is

(GSNE) an = C1 · 2n + C2 · 3n + 2n+ 3.

Remark. A common error is looking for PSNE in the form an = An, under the
impression that 4n has no constant term. But that is wrong, as the resulting equation
2An− 3A = 4n cannot be solved3.

A small subtlety appears in the below example.

Ex. 6. Find all sequences satisfying an+2 − 5an+1 + 6an = 2n.

Solution. GSHE is again an = C1 ·2n +C2 ·3n, but let us see what would happen
if we predicted an = A · 2n (as in Ex. 4). We would compute

an+2− 5an+1 + 6an = A · 2n+2− 5A · 2n+1 + 6A · 2n = 4A · 2n− 10A · 2n + 6A · 2n = 0.

The original equation becomes now 0 = 2n, an obvious contradiction.
The problem is that A · 2n is already a solution of the homogeneous equation, so

it cannot simultaneously be a solution of the nonhomogeneous one.
The correct approach is assuming an = A · n · 2n. Then

an+2 − 5an+1 + 6an = A · (n+ 2) · 2n+2 − 5A · (n+ 1) · 2n+1 + 6A · n · 2n =

= A · (4n+ 8− 10n− 10 + 6n) · 2n = −2A · 2n.

The resulting equation −2A · 2n = 2n is fully solvable. We obtain A = −1
2 ,

(PSNE) an = −1
2 · n · 2

n = −n2n−1,

and finally
(GSNE) an = C1 · 2n + C2 · 3n − n2n−1.

A short explanation: the predicted PSNE should be multiplied by n if the num-
ber c in the function f(n) = Wk(n) · cn (in the present example c = 2) is a root of the
characteristic polynomial (in the present example r2 − 5r + 6), which is actually the
case here. An extra explanation: the predicted PSNE should be multiplied by nm if
c is a root of the characteristic polynomial of multiplicity m.

3writing A = 4n
2n−3 would be absurd because A has to be a constant
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