EIDMA. PROBLEM SET 5

NOTATION: $\mathbb{N} = \{0, 1, \ldots\}$ contains $0, \mathbb{N}_+ = \mathbb{N} \setminus \{0\} = \{1, 2, \ldots\}$ does not contain $0, k\mathbb{Z} = \{\ldots, -2k, -k, 0, k, 2k, \ldots\}$ is the set of integers divisible by k.

- 1. Decide which of the below relations R defined on the set X are equivalence relations:
 - $i) X = \mathbb{Z}, mRn \equiv m n \in 2\mathbb{Z}$
 - $ii) X = \mathbb{Z}, mRn \equiv m + n \in 2\mathbb{Z}$
 - iii) $X = \mathbb{Z}, mRn \equiv$ the numbers m and n are both even or both odd
 - $iv) X = \mathbb{Z}, mRn \equiv m n \in 5\mathbb{Z}$
 - $v) X = \mathbb{Z}, mRn \equiv m + n \in 5\mathbb{Z}$
 - $vi) \ X = \mathbb{Z}, mRn \equiv \text{the numbers} \ m \ \text{and} \ n \ \text{are both divisible by 5}$ or both indivisible by 5
 - $vii) X = \mathbb{Z}, mRn \equiv m \leqslant n + 2021$
 - viii) $X=\mathbb{Z}, mRn\equiv mn$ is a square number, i.e. $(\exists k\in\mathbb{Z})$ $mn=k^2$
 - ix) $X = \mathbb{N}_+, mRn \equiv mn$ is a square number
 - $X(x) = \mathbb{N} \times \mathbb{N}, (k, l)R(m, n) \equiv k + n = l + m$
 - $xi) X = \mathbb{N} \times \mathbb{N}, (k, l)R(m, n) \equiv kn = lm$
 - $xii) \ X = \mathbb{N} \times \mathbb{N}_+, (k, l)R(m, n) \equiv kn = lm$
 - xiii) $X = \mathbb{Z}, mRn \equiv m^2 n^2 \in 8\mathbb{Z}$
 - xiv) $X = \mathbb{Z}, mRn \equiv 3m^2 + 5n^2 \in 8\mathbb{Z}$
 - xv) $X = \mathbb{Z}, mRn \equiv m^3 + 5n \in 6\mathbb{Z}$
- 2. If the relation R from the above problem is an equivalence relation, determine and describe its equivalence classes.