- 1. Let $f:X\to Y$ and $g:Y\to Z$ be two functions, and let $g\circ f:X\to Z$ be their composition. Prove that
 - i) if f and g are both injective then $g \circ f$ is injective;
 - *ii*) if f and g are both surjective then $g \circ f$ is surjective;
 - *iii*) if f and g are both bijective then $g \circ f$ is bijective;
 - iv) if $g \circ f$ is injective then f is injective;
 - v) if $g \circ f$ is surjective then g is surjective.
- 2. If f and g are as above, is it possible that
 - i) $g \circ f$ is injective and g is not injective;
 - *ii*) $g \circ f$ is surjective and g is not surjective;
 - *iii*) $g \circ f$ and f are both bijective but g is not bijective?
- 3. Let now $f : X \to Y$ and $g : Y \to X$ be two functions. Recall what it means that f and g are each other's inverse functions. Can you give an example where $(\forall x \in X)g(f(x)) = x$ is true, but $(\forall y \in Y)f(g(y)) = y$ is false?
- 4. Give an example of a set X and two functions $f, g: X \to X$, for which the equality f(g(x)) = x is true for all $x \in X$, but the equality g(f(x)) = x is false for **exactly one** $x \in X$.