1. Assuming that $x \oplus y = x + y + 1$ and $x \otimes y = xy + x + y$ are two binary operations defined for all $x, y \in \mathbb{R}$,

i) prove that both \oplus and \otimes are commutative;

- *ii*) prove that both \oplus and \otimes are associative;
- *iii*) prove that \otimes is distributive with respect to \oplus ;
- iv) verify if \oplus and \otimes have neutral elements;

v) decide which numbers $x \in \mathbb{R}$ have their inverse elements with respect to \oplus and \otimes , and which do not.

- 2. For what values of parameters $a, b \in \mathbb{R}$ the operation $x \ddagger y = xy + ax + by + 2$ defined for $x, y \in \mathbb{R}$ is commutative and associative?
- 3. For $G = \{1, 3, 5, 9\}$ and $x \circ y$ defined as the last decimal digit of the number xy + 3x + 3y 4

i) show that \circ is a well-defined operation on G and present its table¹;

- *ii*) find the neutral element of \circ ;
- *iii*) prove that (G, \circ) is a group.
- 4. For $H = \{1, 3, 7, 9\}$ and $x \circ y$ defined as the remainder left over when the number xy + 4x + 4y is divided by 12
 - i) show that \circ is a well-defined operation on H and present its table;
 - *ii*) find the neutral element of \circ ;
 - *iii*) prove that (H, \circ) is a group.
- 5. Let P be the polygon with vertices (1,0), (2,0), (4,1), (4,2), (3,4), (2,4), (0,3), (0,2) taken in that order. Find all isometries of P. What group do they form?
- 6. Let Q be the polygon with vertices (1,0), (2,0), (4,2), (4,3), (3,4), (2,4), (0,2), (0,1) taken in that order. Find all isometries of Q. What group do they form?
- 7. Which of the groups introduced above in Problems 3–6 are pairwise isomorphic and which are not?

 $^{^{1}}$ table as in the multiplication table, not the piece of furniture