NAME AND SURNAME

- 1. The set $G = \{0, 4, 6, 8\}$ is a group with the operation $x \circ y$ defined as the last decimal digit of the number 48 + 2x + 2y xy.
 - i) Compute $(4 \circ 4) \circ (4 \circ 4)$ ANSWER: 6
 - *ii*) Find the neutral element of \circ ANSWER: 6
 - *iii*) Find the inverse element 4^{-1} ANSWER: 0
- 2. Let X be the set of all integers between 200 and 886 (including 200 and 886 themselves) that do not contain the digit 9.
 - i) How many elements does X have? ANSWER: 565
 - ii) How many elements of X have three even digits? ANSWER: 99
 - iii) How many elements of X have three different digits? ANSWER: 392
- 3. There are 12 blocks in a bag. They have the following letters on them: A A A C C C C D D T T T. We choose 4 blocks from the bag, and as we know there are $\binom{12}{4} = 495$ ways of doing that, ie. 495 four-element subsets. In how many of those 495 sets are there

enough blocks to form the word CAT? ANSWER: 198

enough blocks to form the word DAD? ANSWER: 24

In this problem please write the actual numbers, eg. 24 rather than $\binom{4}{2}\binom{4}{3}$

4^{*} (questions for extra points) Is the set G with the operation \circ described in Problem 1 above a group? ANSWER: yes

NAME AND SURNAME

- 1. The set $G = \{1, 3, 5, 7\}$ is a group with the operation $x \circ y$ defined as the last decimal digit of the number 9x + 9y xy 2.
 - i) Compute $(5 \circ 5) \circ (5 \circ 5)$ ANSWER: 3
 - ii) Find the neutral element of \circ ANSWER: 3
 - *iii*) Find the inverse element 1^{-1} ANSWER: 7
- 2. Let X be the set of all integers between 300 and 996 (including 300 and 996 themselves) that do not contain the digit 8.

i) How many elements does X have? ANSWER: 484

- ii) How many elements of X have three odd digits? ANSWER: 98
- iii) How many elements of X have three different digits? ANSWER: 336
- 3. There are 12 blocks in a bag. They have the following letters on them: A A A D D G G G O O O O. We choose 4 blocks from the bag, and as we know there are $\binom{12}{4} = 495$ ways of doing that, ie. 495 four-element subsets. In how many of those 495 sets are there

enough blocks to form the word DAD?ANSWER: 24

enough blocks to form the word DOG?ANSWER: 144

In this problem please write the actual numbers, eg. 24 rather than $\binom{4}{2}\binom{4}{3}$

4* (questions for extra points) Is the set G with the operation \circ described in Problem 1 above a group? ANSWER: yes