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Abstract. This survey paper reviews some recent results related to various derived lat-
tices connected with various types of classes of algebraic structures which were obtained
by the authors.

1. Introduction

This survey paper presents recent results obtained for lattices of subclasses of certain
types. Mainly, we focus on representing lattices by lattices of relatively axiomatizable
classes and those of [finitary] prevarieties, also mentioning some general algebraic and
computational properties of those lattices.

Study of such lattices has a long history and goes back to G. Birkhoff and A. I. Maltsev.
In [6] and [16], they have independently asked about which lattices can be represented
as lattices of [quasi]varieties; that is, classes defined by [quasi-]identities. It is one of
the oldest and hardest problems in lattice theory. A number of remarkable results was
obtained concerning this question of Birkhoff and Maltsev. An advance in the Birkhoff-
Maltsev problem was made by K. V. Adaricheva, W. Dziobiak and V. A. Gorbunov by
describing algebraic atomistic lattices isomorphic to quasivariety lattices in [2], see also
V.A. Gorbunov [11, Theorem 5.3.17]. It is also known (V.A. Gorbunov [11]) that all
atomistic algebraic quasivariety lattices are isomorphic to so-called lattices of algebraic
subsets of algebraic lattices. We also note that those lattices are dual to lattices of suitable
first-order theories, cf. results of K. Adaricheva, J. B. Nation [3] and [18] and also the talk
of G. F. McNulty on lattices of equational theories [17]. For other results concerning
this topic, we refer to the book of V.A. Gorbunov [11, Chapter 5], see also the survey
paper by M. Adams, K. Adaricheva, W. Dziobiak, and A. Kravchenko [1], as well as to
bibliography lists in those two. Besides that, lattices of pseudovarieties of finite algebras
were investigated in a number of papers, see, for example, P. Agliano and J. B. Nation [4].

A.M. Nurakunov proved in [21] that there are quasivarieties of algebras (structures with
no relation in the signature) such that the set of finite sublattices of their quasivariety
lattices is not computable, see Section 7. This result shows, in particular, that finding
a complete description of quasivariety lattices should be very hard. But there are some
restricted versions of the Birkhoff-Maltsev problem still of big interest.
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While sub[quasi]variety lattices were studied in a considerable extent, lattices of other
first-order axiomatizable classes remain almost not touched. In [22], D. E. Pal’chunov has
proved that any at most countable complete lattice is isomorphic to a lattice of relatively
axiomatizable classes. In [22, Problem 1], he asked whether the same result holds for an
arbitrary complete lattice. We answer the latter question in the positive in Theorem 5.2,
which is based on a result of V. A. Gorbunov [9].

All classes are abstract ; that is, they are closed under isomorphic copies. For example,
when writing {Ai | i ∈ I} for a set I, we always mean the class of isomorphic copies of
structures from the set {Ai | i ∈ I}.

For all the concepts which are not defined here, we refer to V.A. Gorbunov [11].

2. Basic concepts

For an arbitrary signature σ, let K(σ) denote the class of all structures of signature σ.
Let also T(σ) denote the variety of σ-structures defined by the identity ∀xy x = y.

Following V. A. Gorbunov [11], for a class K ⊆ K(σ), let V(K) [Q(K), respectively]
denote the least [quasi-]variety containing K. Let H(K) denote the class of structures from
K(σ) which are homomorphic images of structures from K; let P(K) [Pω(K), respectively]
denote the class of structures from K(σ) which are isomorphic to Cartesian products
of [finitely many] structures from K; let Ps(K) [Pω

s (K), respectively] denote the class
of structures from K(σ) which are isomorphic to subdirect products of [finitely many]
structures from K; let Ls(K) denote the class of structures from K(σ) which are isomorphic
to superdirect limits of structures from K; and let S(K) denote the class of structures from
K(σ) which are isomorphic to substructures of structures from K. Finally, let Kfin denote
the class of finite members of K.

According to Birkhoff’s Theorem (see V. A. Gorbunov [11, Section 2.3]),

V(K) = HSP(K) = HPsS(K) = HPs(K),

while according to V. A. Gorbunov and V. I. Tumanov [14, Theorem 5.2] (see also V.A.
Gorbunov [11, Theorem 2.3.6]),

Q(K) = LsPsS(K) = LsPs(K).

A class K ⊆ K(σ) is a [finitary ] prevariety, if K = SP(K) = PsS(K) [K = SPω(K) =
Pω

s S(K), respectively]. The notion of a finitary prevariety (in case of signature containing
no relation symbols) was introduced by A. Vernitski in [26]. According to B. Banaschewski
and H. Herrlich [5], a class is a prevariety if and only if it can be defined by infinite
implications.

Definition 2.1. [11, Section 2.5] Let K′ ⊆ K ⊆ K(σ). Then K′ is K-[quasi -]equational,
if K′ = K ∩Mod(Σ) for some set Σ of [quasi-]identities of signature σ.

For the following concept, see V. A. Gorbunov [11] and also [25].

Definition 2.2. Let K′ ⊆ K ⊆ K(σ). Then K′ is a [finitary ] K-prevariety, if K′ = K∩A
for some [finitary] prevariety A ⊆ K(σ); K′ is a K-[quasi ]variety, if K′ = K∩A for some
[quasi]variety A ⊆ K(σ).

Equivalently, K′ is a [finitary] K-prevariety if and only if K′ = K ∩ SP(K′) [K′ = K ∩
SPω(K′), respectively]. Similarly, K′ is a K-[quasi]variety if and only if K′ = K ∩V(K′)
[K′ = K ∩Q(K′), respectively].

Definition 2.3. A class K ⊆ K(σ)fin is a pseudo-quasivariety, if it is a finitary prevariety.
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Note that K ⊆ K(σ)fin is a pseudo-quasivariety if and only if it is a [finitary] Kfin-
prevariety, if and only if it is a Kfin-quasivariety.

Let Lv(K) denote the set of all K-equational subclasses of K, while Lq(K) denotes
the set of all K-quasi-equational subclasses of K. Let also Lp(K) [Lpω(K), respectively]
denote the set of all [finitary] K-prevarieties. Ordered with respect to set inclusion, all
the three form complete lattices. Note that in the case of [finitary] prevarieties, we also
allow the case when the ground of a lattice is a proper class.

Definition 2.4. Let L be a complete lattice. A subset A ⊆ L is a complete meet sub-
semilattice of L, if

∧
X ∈ A for any X ⊆ A. A complete meet subsemilattice A ⊆ L is an

algebraic subset of L, if
∨

X ∈ A for any non-empty up-directed subset X of A.

A binary relation R on a meet semilattice 〈S,∧〉 is distributive, if for any a, b, c ∈ S
relation (c, a ∧ b) ∈ R implies that c = a′ ∧ b′ for some a′, b′ ∈ S such that (a′, a) ∈ R and
(b′, b) ∈ R. The equality relation = is obviously distributive.

For a meet semilattice 〈S,∧, 1〉 with unit and for any binary relation R ⊆ S2, let
Sub(S, R) denote the set of all R-closed subsemilattices of S; that is, X ∈ Sub(S,R) if and
only if the following conditions hold:

-
∧

F ∈ X for all finite F ⊆ X;
- b ∈ X and (a, b) ∈ R imply a ∈ X.

For a complete lattice L, let Subc(L, R) denote the set of all complete R-closed meet sub-
semilattices of L, while Sp(L,R) denotes the set of all algebraic subsets of L which are
R-closed. Let also F(L,R) denote the set of R-closed filters of L. We write Sub(L),
Subc(L), Sp(L), and F(L) instead of Sub(L,=), Subc(L,=), Sp(L,=), and F(L,=), re-
spectively. Ordered by inclusion, Sub(L,R), Subc(L,R), Sp(L, R) form complete lattices,
while ordered by reverse inclusion, F(L, R) also forms a complete lattice.

3. Representing by congruence lattices

For a structure A ∈ K(σ) and for a class K ⊆ K(σ), let ConK A denote the set of
congruences θ on A such that A/θ ∈ K. If K = K(σ), then we write ConA instead of
ConK A. For θ, θ′ ∈ ConA, we write θ′ E θ, if A/θ′ embeds into A/θ. Then E is called the
embedding relation. Obviously, this relation is distributive.

The next theorem combines the characterization theorem proved for quasivarieties by
V.A. Gorbunov and V. I. Tumanov [13, 14], see also V.A. Gorbunov [11, Corollaries 5.2.2,
5.2.6] with its analogue for [finitary] prevarieties obtained in [25].

Theorem 3.1. Let A ⊆ K(σ) be a prevariety and let A ∈ A. The following holds:

Lp(H(A) ∩A) ∼= Subc(ConA A,E);

Lpω(H(A) ∩A) ∼= Sub(ConA A, E).

If A is [l]-projective in A, then

Lq(H(A) ∩A) ∼= Sp(ConA A, E);

Lv(H(A) ∩A) ∼= F(ConA A,E).

In particular, one gets the following
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Corollary 3.2. [11, Corollaries 5.2.2, 5.2.5] Let A ⊆ K(σ) be a prevariety and let FK(ω) ∈
A be a K-free structure of countable rank. The following holds:

Lq(A) ∼= Sp
(
ConK FK(ω), E

)
;

Lv(A) ∼= F
(
ConK FK(ω), E

)
.

For any class K ⊆ K(σ) and any cardinal κ, let Kκ denote the class of κ-generated
structures from K. The following statement is an analogue of Corollary 3.2 for prevarieties.

Corollary 3.3. [25] For any prevariety K ⊆ K(σ) and for any cardinal κ,

Lp(Kκ) ∼= Subc

(
ConK FK(κ),E

)
.

We note that if K is a prevariety, then for any structure A, the congruence lattice
ConK A is a complete lattice, which is algebraic if and only if K is a quasivariety. In
the next section, we will state a partial converse of Corollary 3.2. More precisely, any
complete lattice is isomorphic to the lattice of relative varieties of a prevariety, any lattice
of algebraic subsets of an algebraic lattice is isomorphic to a quasivariety lattice, any lattice
of complete subsemilattices of a complete lattice is isomorphic to a prevariety lattice, and
any subsemilattice lattice is isomorphic to a finitary prevariety lattice, see Propositions
4.2, 4.3, and 4.4.

A well-known and long standing problem in lattice theory asks whether any finite lattice
is isomorphic to the congruence lattice of a finite algebra of finite signature. The next
result proved by A. M. Nurakunov [19] shows that any finite lattice is isomorphic to a
relative congruence lattice of a finite algebra of finite signature.

Theorem 3.4. [19] For any finite lattice L, there is a quasivariety K of unars [pointed
Abelian groups, respectively] and a finite algebra A ∈ K such that L ∼= ConK(A).

The following result obtained by A. M. Nurakunov [20] gives a description of lattices of
subvarieties in terms of congruence lattices.

Theorem 3.5. [20] A lattice is isomorphic to a variety lattice if and only if it is dually
isomorphic to the congruence lattice of a monoid with two additional unary operations
possessing certain properties.

Based on ideas from [20], K. Adaricheva and J. B. Nation proved in [3] an analogue
of Theorem 3.5 for quasivariety lattices: Quasivariety lattices are exactly lattices dually
isomorphic to congruence lattices of semilattices endowed with unary operations possess-
ing certain properties. Besides that, J. B. Nation proved in [18, Corollary 16] that the
congruence lattice of any semilattice with operators is dually isomorphic to the lattice of
subprevarieties of a prevariety.

4. Representation by lattices of subclasses

4.1. Relation symbols. Let σ = {pi | i ∈ I} be a signature consisting of unary relation
symbols only. Furthermore, for any set X ⊆ I, let AX denote a structure from T(σ) such
that AX |= ∀x pi(x) iff i ∈ X. Obviously, T(σ) consists of isomorphic copies of structures
AX , X ⊆ I.

Let 〈X,C〉 be a closure space and L(X, C) be the closure lattice on X. We put

σ(X) = {px | x ∈ X}.
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Let Σ(X, C) consist of (in general infinite) implications of the form

∀x
∧

a∈A

pa(x) → pb(x), A ⊆ X, b ∈ C(A).

Of course, if the set X is finite, then the signature σ(X) is finite, while Σ(X, C) becomes
a finite set of quasi-identities.

The class Mod
(
Σ(X,C)

)
is obviously closed under substructures and Cartesian prod-

ucts, whence it is a prevariety. Therefore, the class K(X, C) = Mod
(
Σ(X, C)

)∩T
(
σ(X)

)
is also a prevariety.

Lemma 4.1. [25] For any closure space 〈X, C〉, the class K(X, C) consists of isomorphic
copies of structures AB, where B ∈ L(X, C).

The following proposition shows, in particular, that any complete lattice is isomorphic
to the lattice of relative equational classes of a prevariety. Originally, it was proved by
V.A. Gorbunov [9, Example 4.9]. In [25] M. Semenova and A. Zamojska-Dzienio [25] gave
a short direct proof; a sketch of it is presented below.

Proposition 4.2. For any complete lattice L, there are a signature σ consisting only of
unary relation symbols and a prevariety K ⊆ T(σ) such that L∂ ∼= Lv

(
K

)
and Subc(L) ∼=

Lp
(
K

)
.

Sketch of proof. Since the lattice L is complete there is a closure space 〈X, C〉 such that
L ∼= L(X, C). Let σ = σ(X) and let K = K(X,C). Then K is a prevariety and a map
ϕ : L(X,C) → Lv(K) defined by the rule

ϕ : B 7→ {AF ∈ T(σ) | F ∈ L(X, C) and B ⊆ F}, B ∈ L(X,C),

establishes a dual lattice isomorphism. ¤

The following proposition is a finitary analogue of Proposition 4.2 for prevarieties.

Proposition 4.3. [25] For any meet semilattice 〈S,∧, 1〉 with unit, there is a signature
σ consisting only of unary relation symbols and a finitary prevariety K ⊆ T(σ) such that
Sub(S) ∼= Lpω(K).

Combining Propositions 4.2-4.3, one gets the following proposition. A part of this
result concerning relative [quasi]variety lattices was proved by V. A. Gorbunov and V. I.
Tumanov [13, 14], see also V. A. Gorbunov [11, Theorem 5.2.8]. In the present form, it
was proved in [25].

Proposition 4.4. For any complete algebraic lattice L, there are a signature σ consisting
only of unary relation symbols and a quasivariety K ⊆ T(σ) such that L∂ ∼= Lv

(
K

)
,

Sp(L) ∼= Lq
(
K

)
, Subc(L) ∼= Lp(K), and Sub(L) ∼= Lpω(K).

From Proposition 4.4, we get also the following statement which appeared in [25].

Corollary 4.5. The class of complete dually algebraic lattices coincides with the class of
lattices of relative equational classes of quasivarieties.

Proposition 4.6. For any complete upper continuous lattice L, there is a signature σ
consisting only of unary relation symbols and a prevariety K ⊆ T(σ) such that Sp(L)
embeds into Lq

(
K

)
.
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In general, for a complete upper continuous lattice L, the lattice Sp(L) is not necessarily
isomorphic to Lq(K), see [25]. However, it is the case when L is algebraic, as Proposition
4.4 above shows.

Remark 4.7. It is well-known that quasivariety lattices are completely join-semidistri-
butive and dually algebraic, cf. V. A. Gorbunov [11, Theorem 5.1.12 and Proposition
5.1.1]. In contrast, examples given in [25] show that, in general, lattices of the form
Lq(K) and Lp(K), where K is a prevariety, are neither join-semidistributive nor even
lower continuous.

Corollary 4.8. [25] There are prevarieties K such that neither Lq(K) nor Lp(K) embed
into a quasivariety lattice.

Using similar methods one can also prove that any complete lattice is isomorphic to the
lattice of relative equational classes of a class of signature with one unary relation symbol
and constant symbols as well as of signature containing only constant symbols.

4.2. A relation symbol and constants. Let 〈X,C〉 be a fixed closure space. We con-
sider the signature σp(X) = {p} ∪ {cx | x ∈ X}, where p is a unary relation symbol and
cx is a constant symbol for any x ∈ X.

Let K′ ⊆ K
(
σp(X)

)
be the class of structures A = 〈A;σp(X)〉 such that for any a ∈ A,

there is x ∈ X with a = cA
x , and satisfying the following first-order sentences

∀xy cu = cv → x = y, u 6= v in X;

∀x cu = cv → p(x), u 6= v in X;

∀xy
∧

x∈X

p(cx) → x = y.

Furthermore, for any set U ⊆ X, let PU denote a structure from K′ such that PU |= p(cx)
iff x ∈ U . Obviously, K′ consists of isomorphic copies of structures PU , U ⊆ X. Moreover,
PX is the trivial structure.

Lemma 4.9. The following statements hold for any set X.

(i) If A,B ⊆ X then PA ∈ H(PB) if and only if B ⊆ A.
(ii) Let {Ai | i ∈ I} ⊆ X and let A ⊆ X. Then the structure A = PA ∈ K′ is

isomorphic to a substructure in B =
∏

i∈I PAi if and only if A =
⋂

i∈I Ai.

Let Σp(X, C) consist of the following (in general infinite) implications of the form
∧

u∈U

p(cu) → p(cv), U ⊆ X, v ∈ C(U).

Of course, if the set X is finite, then the signature σp(X) is finite, while Σp(X, C) becomes
a finite set of quasi-identities. Let Kp(X, C) = K′ ∩Mod

(
Σp(X, C)

)
.

Lemma 4.10. For any closure space 〈X, C〉, the class Kp(X,C) consists of isomorphic
copies of structures PB, where B ∈ L(X,C).

Proposition 4.11. For any complete lattice L, there is a signature σ consisting of one
unary relation symbol and |L| many constant symbols and there is a class K ⊆ K(σ) such
that L ∼= Lv

(
K

)
and Subc(L∂) ∼= Lp

(
K

)
.
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Sketch of proof. Since the lattice L is complete, there is a closure space 〈X,C〉 such that
L∂ ∼= L(X,C). Let σ = σp(X) and let K = Kp(X,C). It follows from Lemma 4.1 that
the class K consists of isomorphic copies of structures Pψ(a), where a ∈ L. Now, the map
ϕ : L(X,C) → Lv(K) defined by the rule

ϕ : B 7→ {PF ∈ K′ | B ⊆ F ∈ L(X, C)}, B ∈ L(X, C),

establishes a dual isomorphism. Moreover, the map ϕ′ : Subc(L∂) → Lp(K) defined by
the rule

ϕ′ : B 7→ {Pψ(b) ∈ K′ | b ∈ B}, B ∈ Subc(L∂),

is a lattice isomorphism. ¤

Proposition 4.12. For any meet semilattice 〈S,∧, 1〉 with unit, there is a signature σ
consisting of one unary relation symbol and |S| many constant symbols and there is a
class K ⊆ K(σ) such that Sub(S) ∼= Lpω(K).

Sketch of proof. Let σ = {p} ∪ {cx | x ∈ S} consist of a unary relation symbol p and
constant symbols cx, x ∈ S, and let the class K consist of isomorphic copies of structures
P↓a, where a ∈ S. Define a map ϕ : Sub(S) → Lpω(K) by the rule

ϕ : B 7→ {P↓b ∈ K | b ∈ B}, B ∈ Sub(S).

It is a lattice isomorphism. ¤

4.3. Only constants. Let 〈X, C〉 be a fixed closure space. We consider the signature
σ(X) = {c} ∪ {cx | x ∈ X}, where cx is a constant symbol for any x ∈ X as well as c is
a constant symbol. In fact, one can proceed without this additional constant c, but it is
just more convenient to have it.

Let K′ ⊆ K
(
σ(X)

)
be the class of structures A = 〈A; σ(X)〉 such that for any a ∈ A,

a = cA or there is x ∈ X with a = cA
x and satisfying the following first-order sentences

∀xy cu = cv → cu = c, u 6= v in X.

Furthermore, for any set U ⊆ X, let FU denote a structure from K′ such that FU |= cx = c
iff x ∈ U . Obviously, K′ consists of isomorphic copies of structures FU , U ⊆ X. Moreover,
FX is the trivial structure.

Lemma 4.13. The following statements hold for any set X.
(i) If A,B ⊆ X then FA ∈ H(FB) if and only if B ⊆ A.
(ii) Let {Ai | i ∈ I} ⊆ X and let A =

⋂
i∈I Ai. Then the structure A = FA ∈ K′ is

isomorphic to a substructure in B =
∏

i∈I FAi.

Let Σ(X, C) consist of the following (in general infinite) implications of the form
∧

u∈U

cu = c → cv = c, U ⊆ X, v ∈ C(U).

Of course, if the set X is finite, then the signature σ(X) is finite, while Σ(X, C) becomes
a finite set of quasi-identities. Let K(X, C) = K′ ∩Mod

(
Σ(X,C)

)
.

Proofs of all the results presented in this section are similar to ones of corresponding
results about the class Kp(X,C) presented in Subsection 4.2.

Lemma 4.14. For any closure space 〈X, C〉, the class K(X, C) consists of isomorphic
copies of structures FB, where B ∈ L(X, C).
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Proposition 4.15. For any complete lattice L, there is a signature σ consisting of |L|+
1 many constant symbols and there is a class K ⊆ K(σ) such that L ∼= Lv

(
K

)
and

Subc(L∂) ∼= Lp
(
K

)
.

Proposition 4.16. For any meet semilattice 〈S,∧, 1〉 with unit, there is a signature σ
consisting of |S| + 1 many constant symbols and there is a class K ⊆ K(σ) such that
Sub(S) ∼= Lpω(K).

5. Relatively axiomatizable classes of structures

In [22, Theorem 8], D. E. Pal’chunov has proved that any at most countable complete
lattice is isomorphic to a lattice of relatively axiomatizable classes. In [22, Problem 1], he
asked whether the same result holds for an arbitrary complete lattice. M. Semenova and
A. Zamojska-Dzienio answered the latter question in the positive in [25] for a signature
consisting of unary relation symbols and a prevariety of trivial structures, see Theorem
5.2 below. We emphasize that this positive answer follows essentially by results of V. A.
Gorbunov [9], see also [11] and Proposition 4.2.

Exposition here follows [25]. We also note that Theorem 5.2 can be inferred from results
of Subsections 4.2-4.3 for a signature containing one unary relation symbol and constants
as well as for a signature containing only constants.

Definition 5.1. [22, Definition 26] Let K be a class of structures of signature σ and let
∆ be a set of first-order sentences of the same signature. A class K′ is axiomatizable in
K relatively to ∆, if K′ = K ∩Mod(Σ) for some set Σ ⊆ ∆.

It follows from Definition 5.1 that a class K ⊆ K(σ) is axiomatizable if and only if it is
axiomatizable in K(σ) relatively to the set of all first-order sentences. Furthermore, for any
set ∆ of sentences and any class K ⊆ K(σ), the set of all axiomatizable in K relatively
to ∆ classes forms a complete lattice. Following D. E. Pal’chunov [22], we denote this
lattice by A(K,∆). The following corollary shows that any complete lattice is a lattice of
relatively axiomatizable classes.

Theorem 5.2. For any complete lattice L, there are a signature σ, a prevariety K ⊆ K(σ),
and a set ∆ such that L ∼= A(K, ∆), where ∆ is the set of all identities of signature σ.

Now, we get from Corollary 4.5 and [11, Proposition 5.1.1]:

Corollary 5.3. The class of complete dually algebraic lattices coincides with the class
of lattices of the form A(K, ∆), where K is a quasivariety and ∆ is a set of first-order
sentences.

Corollary 5.4. [22, Theorem 9], [25] For any finite lattice L, there are a finite signature
σ and a set ∆ of first-order sentences of σ such that L ∼= A(K(σ),∆).

6. A reduction theorem

In [10] (see also his monograph [11]), V. A. Gorbunov has proved so-called reduction
theorems for lattices of quasivarieties and lattices of varieties. For a class K ⊆ K(σ), and
for a positive n < ω, let FK(n) denote the K-free structure of rank n.

Theorem 6.1. [11, Corollaries 5.5.2, 5.5.12] Let K ⊆ K(σ) be a prevariety. Then the
following holds:

Lq(K) ∼= lim←− Lq
(
H(FK(n)) ∩K

) ∼= lim←− Sp
(
ConK FK(n), E

)
;

Lv(K) ∼= lim←− Lv
(
H(FK(n)) ∩K

) ∼= lim←− F∗
(
ConK FK(n)

)
.



DERIVED LATTICES 9

In particular, the following statements are true.

Corollary 6.2. [11, Corollaries 5.5.4, 5.5.13] Let σ contain finitely many relation symbols
and let K ⊆ K(σ) be a locally finite prevariety. Then

(i) Lq(K) ∼= lim←−Ln for a set {Ln | n < ω} of finite lower bounded lattices;
(ii) Lv(K) ∼= lim←−Ln for a set {Ln | n < ω} of finite lattices.

In particular, both Lq(K) and Lv(K) are residually finite lattices.

In [10], V.A. Gorbunov has also proved the following version of the reduction theorem
for lattices of pseudo-quasivarieties.

Theorem 6.3. [11, Theorem 5.5.16] Let σ contain only finitely many relation symbols
and let K ⊆ K(σ) be a pseudo-quasivariety. Then there is a family {Ln | n < ω} of finite
lower bounded lattices such that Lp(K) ∼= lim←−Ln.

In [25] M. Semenova and A. Zamojska-Dzienio proved a [finitary] prevariety analogue
of Theorem 6.1. More precisely, the lattice of subprevarieties of a prevariety is isomor-
phic to an inverse limit of complete subsemilattice lattices of semilattices endowed with
a distributive binary relation (see Theorem 6.4), while the lattice of finitary subprevari-
eties of a finitary prevariety is isomorphic to an inverse limit of subsemilattice lattices of
semilattices endowed with a distributive binary relation (see Theorem 6.5). These results
generalize Theorem 6.3.

To prove Theorems 6.4 and 6.5, one should assume the following class form of Axiom
of Choice, see (CAC 1) in H. Rubin and J. E. Rubin [24, Section II.2]:

If S is a class of non-empty sets,
there is a function F such that F (x) ∈ x for each x ∈ S.

Theorem 6.4. [25] For any prevariety K ⊆ K(σ), the lattice Lp(K) is isomorphic to an
inverse limit of lattices of the form Subc(S,R), where S is a complete meet semilattice
with unit and R is a distributive relation on S.

Sketch of proof. Let I be the class of all subsets of K ordered by inclusion, let Ai =∏{A | A ∈ i}, and let Ki = H(Ai) ∩K for all i ∈ I. Moreover, as Ki ⊆ Kj , the map

ϕji : Lp(Kj) → Lp(Ki), ϕji : X 7→ X ∩Ki

is a complete lattice homomorphism for all i ⊆ j in I. Besides that, ϕkjϕji = ϕki and ϕii

is just the identity map for all i ⊆ j ⊆ k in I. Therefore, the triple Λ = 〈I,Ki, ϕji〉 is an
inverse spectrum.

Now, the map ϕ : Lp(K) → lim←−Λ defined as follows:

ϕ : X 7→ 〈X ∩Ki | i ∈ I〉,
is a complete lattice isomorphism and one obtains Lp(K) ∼= lim←−Λ.

Finally, for any i ∈ I, we have Lp(Ki) = Lp
(
H(Ai)∩K

) ∼= Subc

(
ConK Ai, E

)
according

to Theorem 3.1, whence the statement of the theorem follows. ¤

The next statement is an analogue of Theorem 6.4 for finitary prevarieties.

Theorem 6.5. [25] For any finitary prevariety K ⊆ K(σ), the lattice Lpω(K) is isomor-
phic to an inverse limit of lattices of the form Sub(S, R), where S is a meet semilattice
with unit and R is a distributive relation on S.



10 A.M. NURAKUNOV, M.V. SEMENOVA, AND A. ZAMOJSKA-DZIENIO

Now Theorem 6.3 becomes an easy corollary of any of Theorems 6.4 and 6.5 according
to the definition of a pseudo-quasivariety. We also note that to prove Theorem 6.5 for
pseudo-quasivarieties, ordinary Axiom of Choice is sufficient.

It is not hard to check (see [11, Lemma 5.5.17 and Corollary 5.5.18]) that if K is a
locally finite quasivariety, then the map

ϕ : Lq(K) → Lp(Kfin); ϕ : X → Xfin

defines an isomorphism. Therefore, Theorem 6.4 implies Corollary 6.2(i).
For a pseudo-quasivariety K ⊆ K(σ), let I be the set of all finite subsets of K, let

Ki = H
(∏{A | A ∈ i}) ∩K for all i ∈ I, and let

Lq = {Lq
(
Q(Ki)

) | i ∈ I}.
The following corollary generalizes V. A. Gorbunov [11, Corollary 5.5.22].

Corollary 6.6. Let σ contain finitely many relation symbols and let K ⊆ K(σ)fin be a
pseudo-quasivariety. Then Lp(K) ∈ SPuH(Lq) ∩ SPu

(
Lq

(
Q(K)

))
. In particular, any

universal sentence which holds in Lq
(
Q(K)

)
also holds in Lp(K).

The next theorem shows that a similar result for lattices of pseudo-varieties also holds.
It was proved by P. Agliano and J. B. Nation [4] for pseudo-varieties of algebras, but their
proof remains valid for structures with finitely many relation symbols.

Theorem 6.7. [4, Theorem 2.1] Let σ contain finitely many relation symbols and let
K ⊆ K(σ)fin be a pseudo-variety. Then the lattice Lpv(K) of pseudo-varieties containing
in K belongs to the class

HSPu

(
Lv

(
V(A)

) | A ∈ K
)
.

In particular, any positive universal sentence which holds in Lv
(
V(K)

)
also holds in the

lattice Lpv(K) of all pseudo-varieties contained in K.

7. Non-computability properties of relative subclass lattices

The following problem which is due to G. McNulty [17]: Is the set of all finite lattices
of varieties computable? This problem is also mentioned in W.A. Lampe [15].

In [21, Theorem 1], A. M. Nurakunov has proved the following statement.

Theorem 7.1. Let a signature σ contain at least one non-constant operation. Then there
is a quasivariety K ⊆ K(σ) such that the set of all finite sublattices of the quasivariety
lattice Lq(K) is not computable.

The latter result means that there is no algorithm to decide whether a given finite
lattice embeds into such a quasivariety lattice. Therefore, it looks hopeless to find a
complete structural description of lattices isomorphic to [quasi]variety lattices, cf. the
Birkhoff-Maltsev problem.

We also note that from the proof of Theorem 7.1, it is possible to get an estimation of
algorithmic complexity for certain quasivariety lattices as well as to compute the number
of non-isomorphic quasivariety lattices having a non-computable set of finite sublattices.

Corollary 7.2. There is a locally finite quasivariety such that the set of all finite sublattices
of its quasivariety lattice is not computable, while it is computably enumerable.

Corollary 7.3. There are continuum many locally finite quasivarieties such that the set
of finite sublattices of their quasivariety lattices is not computable.
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While Theorem 7.1 and Corollaries 7.2-7.3 deal with purely functional signature, there
are their complete analogues for purely relational signature. In particular, it is proved
in [25] (based on ideas from [21]) that there are quasivarieties of one-element relation
structures such that their [quasi]variety lattices or [finitary] prevariety lattices have a
non-computable computably enumerable set of finite sublattices.

Theorem 7.4. [25] The following statements hold.
(i) There is a countable relation signature τ and a quasivariety K ⊆ T(τ) such that

the set of all finite sublattices of the relative variety lattice Lv(K) is computably
enumerable but not not computable [not computably enumerable, respectively].

(ii) There is a countable relation signature σ and a quasivariety K ⊆ T(σ) such
that Lq(K) = Lp(K) = Lpω(K) and the set of all finite sublattices of this lat-
tice is computably enumerable but not computable [not computably enumerable,
respectively].

8. Open problems

As it has been already mentioned in Introduction, very little is known about lattices of
first-order axiomatizable classes different from [quasi]varieties. Thus the following general
problem arises:

Problem 1. Study lattices of [relatively] axiomatizable classes and lattices of [finitary]
prevariety lattices.

Remark 4.7 suggests the following problem.

Problem 2. [25] Is there a nontrivial lattice property satisfied by all lattices of [finitary]
prevarieties? Which lattices are isomorphic to lattices of [finitary] prevarieties?

Problem 2 is an analogue of the Birkhoff-Maltsev problem. It is well known (cf. R.
Freese, J. Ježek, J. B. Nation [7, Theorem 2.84]) that finite bounded lattices generate the
variety of all lattices. According to V. B. Repnitskǐı [23], the lattice Subc(L) is finite lower
bounded for any finite lattice L. Therefore, prevariety lattices of quasivarieties generate
the variety of all lattices. Thus according to Proposition 4.2, there is no nontrivial lattice
identity which would hold on all prevariety lattices.

Due to results presented in Section 7, one can also pose the following

Problem 3. For certain classes of structures, is the finite membership problem decidable?
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