Evolutionary Approach to Security Games with Signaling

¹Faculty of Mathematics and Information Science, Warsaw University of Technology ²Center for Research on Computation and Society, Harvard University ³Robert Bosch Centre for Data Science and AI, IIT Madras ⁴Department of Computer Science and Engineering, IIT Madras

Problem definition

- Inspiration: prevent poaching in Africa
- 2 players: **Defender** and **Attacker**
- Defender's units: patrollers, drones
- Drone can send one of the following signals:
 - weak sending information to patrollers about attack detection
 - strong sending information about attack and lauch sound/light signals to deter Attacker
- Games on graph each vertex is target with set of payoffs
- Defender's strategy: assigning patrollers and drones to targets, signaling strategy
- Attacker's strategy: choose target to attack, signaling reaction
- Players' uncertainties considered

Problem definition – Stackelberg equilibrium

- Defender commits strategy first
- Attacker, knowing the Defender's strategy, chooses his/her strategy
- Defender always commits to a mixed strategy
- **Stackelberg equilibrium**: pair of players' strategies, for which strategy change by any of players leads to his/her result deterioration.

 $(\pi_D^*, R(\pi_D^*)) \in \Pi_D \times \Pi_A$ $\pi_D^* = \operatorname{argmax}_{\pi_D \in \Pi_D} U_D(\pi_D, R(\pi_D))$ $R(\pi_D) = \operatorname{argmax}_{\pi_A \in \Pi_A} U_A(\pi_D, \pi_A)$

 $G \in \{D, A\}$ – players (Defender, Attacker) Π_G – a set of player's G all mixed strategies U_G – payoff of player G

Evolutionary algorithm (EASGS) - solutions encoding

$$CH_j = \{ (e_1^j, q_1^j), \dots, (e_i^j, q_i^j), \dots, (e_{d_j}^j, q_{d_j}^j), \boldsymbol{\Psi}_{\boldsymbol{j}}^{\boldsymbol{\theta}}, \boldsymbol{\Phi}_{\boldsymbol{j}}^{\boldsymbol{\theta}} \}$$

- $e_i^j = (V_p, V_s, V_r)$ pure strategy
 - V_p a set of vertices with assigned patrollers
 - V_s a set of vertices with assigned drones
 - V_r reallocation plan, a set of vertices (connected with V_p), to which each patroller moves if no adversaries are observed
- q_i^j the probability of playing strategy e_i^j
- $\theta \in \{\bar{s}, s^+, s^-\}$ drones allocation states:
 - $\bar{S}\,$ no patroller is in the drone's neighbourhood
 - s^+ a patroller is planned to visit drone's vertex in the reaction stage

 s^- - no patroller will visit drone's vertex in the reaction stage but there is at least one patroller in neighbourhood who can respond

 $oldsymbol{\Psi}_{oldsymbol{j}}^{oldsymbol{ heta}} = [\Psi_{j,1}^{oldsymbol{ heta}}, \Psi_{j,2}^{oldsymbol{ heta}}, \dots, \Psi_{j,\mathcal{N}}^{oldsymbol{ heta}}]$ - signaling strategy in case of attack detection $oldsymbol{\Phi}_{oldsymbol{j}}^{oldsymbol{ heta}} = [\Phi_{j,1}^{oldsymbol{ heta}}, \Phi_{j,2}^{oldsymbol{ heta}}, \dots, \Phi_{j,\mathcal{N}}^{oldsymbol{ heta}}]$ - signaling strategy in case of no attack detection

EASGS operators

- 3 mutation types:
 - random allocation/reallocation modification
 - random singaling probability modification
 - random pure strategy improvement
- **Crossover**: combining pure strategies with halved probabilities, averaging signaling probabilities
- Evaluation based on game rules (including detection and observational uncertainties)

Benchmark games

- 342 games with different graph topologies:
 - sparse (avg deg = 2) 50 games
 - moderate (avg deg = n/2) 50 games
 - dense (avg deg = n-2) 50 games
 - locally dense (connected cliques) 192 games
- number of vertices: $n \in [10, 100]$
- number of patrollers: $k_s = \sqrt{\frac{n}{2}}$
- number of drones: $k_d = \frac{2}{3}n k_s$

Results

EASGS obtained the best result for 200 out of 342 games

	SBP	SBP+W	m-CombSGPO	EASGS
sparse	-86.68 (84%)	-86.01 (92%)	-419.86 (0%)	-91.32 (6%)
moderate	-75.01 (2%)	-72.75 (36%)	-255.73 (0%)	-69.92 (62%)
dense	-58.72 (2%)	-57.98 (34%)	-149.14 (0%)	-51.47 (64%)
locally-dense	-60.68 (4%)	-57.80 (26%)	-340.65 (0%)	-54.36 (70%)

Averaged payoffs for all games

Memory consumption

