

DeepIQ: A Human-Inspired AI System for Solving IQ Test Problems

Jacek Mańdziuk, Adam Żychowski

 $\label{eq:Faculty} \mbox{ Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland $$ {j.mandziuk, a.zychowski}@mini.pw.edu.pl$ }$

15 July 2019

Introduction	DeepIQ algorithm	Evaluation	Results	Odd-one-out	Summary
		Motivation			

- check algorithms' ability to solve problems challenging for people IQ tests
- computational intelligence measurement (*Psychometric AI*) vs people intelligence metric

- designing system universally applicable for different types of IQ tasks
- gap in the machine learning literature

Res

Odd-o

Summary

Raven's Matrices

Figure: An Raven's Matrix example.

- the most popular IQ test
- independent of nationality, age, knowledge and language
- well-established method, widely researched by psychologists and used, for instance, in *Mensa* qualification tests

Res

Odd-

Summary

Raven's Matrices types

(b) RM with two relations

(c) RM with three relations (d) RM with logic relation

Res

Odd-

Summary

Raven's Matrices types

(a) RM with one relation

(b) RM with two relations

(c) RM with three relations (d) RM with logic relation

シック 正則 スポッスポッス セッ

Res

Odd-on

Summary

System overview

Figure: DeepIQ system overview.

Three main system components:

- a deep autoencoder which provides compressed representation of individual RM cells
- four feature related multi-layer perceptrons
- a scoring module

Figure: Deep autoencoder architecture. Its last layer provides a compressed version (16 numbers) of the input image.

Feature related perceptrons

Figure: An architecture of the feature-related module with two example figure images shown in the input. Figures have the same shape and size, differ "moderately" in shading and "significantly" by rotation angle.

Res

d-one-out

Summary

Answers scoring module

$$\begin{array}{l} s_{a_i}:=0\\ \text{if } f^k(x_{11},x_{12})=f^k(x_{12},x_{13}) \text{ and}\\ f^k(x_{21},x_{22})=f^k(x_{22},x_{23}) \text{ then}\\ \text{if } f^k(x_{31},x_{32})=f^k(x_{32},x_{33}) \text{ then}\\ s_{a_i}:=s_{a_i}+1\\ \text{else}\\ s_{a_i}:=s_{a_i}-1 \end{array}$$

 $f^{k}(x_{i_{1}j_{1}}, x_{i_{2}j_{2}})$ - the output neuron with the highest activation value in the *k*-th feature related MLP ($k \in \{\text{shape, rotation, shape, shading}\}$) in response to the compressed representation of images at positions (i_{1}, j_{1}) and (i_{2}, j_{2}) in the RM, respectively. f^{k} is interpreted as a *distance of feature k* between these two images.

Training procedure

- randomly generated images (15 different shapes, random shading, rotation and size)
- autoencoder trained with 5000 random images
- feature perceptrons trained with 5000 pairs of random images

Introduction

DeepIQ algorithm

Evaluation

Res

Summary

Tested datasets

Generated tests (G-set)

Figure: Sample tests from generated set.

Sandia tests (S-set)

Figure: Sample tests from Sandia set.

Figure: All shapes in generated set.

Figure: All shapes in Sandia set.

Introduction	DeepIQ algorithm	Evaluation	Results	Odd-one-out	Summary
		Results			

	$TR \to TS$	1 relation	2 relations	3 relations
DeeplQ	$G\toG$	$73.3\%\pm.7\%$	$74.1\%\pm.5\%$	$76.0\%\pm.6\%$
DeeplQ	$G\toS$	70.2% \pm .4%	$71.9\%\pm.6\%$	$73.2\%\pm.2\%$
Humans	ightarrow S	87.0%	72.0%	55.0%

Table: A comparison of the averaged accuracy of DeepIQ on the RMs generated by the authors (G-set) and on Sandia RMs (S-set). The last row presents human results on the S-set.

Introduction	DeepIQ algorithm	Evaluation	Results	Odd-one-out	Summary
		Odd-one-out			

- point the *oddest* figure image out of given *n* images
- while solving RMs relies on detection and quantification of similarities, the odd-one-out tests are focused on feature based differences between figure images.

Figure: Example odd-one-out tests.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

R

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへ⊙

Odd-one-out results

- the first two modules (deep AE and feature related MLPs) used with no additional training or tuning of any kind
- only the scoring module was adopted to address specificity of odd-one-out problem

		Number of figures (<i>n</i>)								
			4	Į	5	(5			
		G-set	S-set	G-set	S-set	G-set	S-set			
с	1	$93.2\%\pm.4\%$	$91.5\% \pm 0.2\%$	$93.1\%\pm.2\%$	$91.3\%\pm.1\%$	93.3% ± .4%	$91.1\%\pm.2\%$			
	2	$95.2\%\pm.2\%$	$91.2\% \pm 0.5\%$	95.5% ± .4%	$92.1\%\pm.2\%$	95.2% ± .4%	$92.1\%\pm.1\%$			
	3	$96.2\%\pm.4\%$	$92.5\% \pm 0.1\%$	$96.4\% \pm .3\%$	$92.7\%\pm.4\%$	$96.3\% \pm .3\%$	$92.9\%\pm.3\%$			

Table: DeepIQ averaged accuracy on G1-set and S1-set for various problem sizes (n) and numbers of common features in the subset of n - 1 figures (c).

Introduction DeepIQ a	algorithm Evaluation	Results	Odd-one-out	Summary
	Sun	nmary		

• the first two system components (autoencoder and feature networks) are universal and could be applied to other types of IQ test problems

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- the system follows *transductive transfer learning* approach (knowledge learned from one data set is successfully used to solve the same problem with data set created with different distribution)
- ability to detect differences (and assess their range) in figure shapes, sizes, rotations and shadings
- approximately human level performance

Introduction

DeepIQ algorithm

Evaluation

Results

Odd-c

Summary

Questions?

◆□▶ ◆□▶ ◆目▶ ◆目■ のへぐ

Challenging RM tests

Figure: Examples of challenging RM tests. A correct answer is outlined with a solid line and the one proposed by DeepIQ with a dashed line.

Challenging Odd-one-out tests

Figure: Examples of challenging odd-one-out tests. A correct answer is outlined with a solid line and the one proposed by *DeepIQ* with a dashed line.