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Security Games
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• Two asymmetrical players: Defender and Attacker
• Each game is composed of m time steps.
• Each player chooses an action to be performed in each time step.
• A player’s pure strategy σP (P ∈ {D, A}) is a sequence of their actions in 

consecutive time steps: σP = (a1, a2, . . . , am).

• Defender commits to his/her strategy first.
• Attacker, knowing the Defender’s strategy, chooses his/her strategy.
• Defender always commits to a mixed strategy.



Stackelberg equilibrium
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Stackelberg equilibrium: a pair of players’ strategies, for which strategy change 
by any of players leads to his/her result deterioration.

Goal: find optimal Defender’s strategy



Real-life applications
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Federal Air Marshal Service Los Angeles Airport

Poaching in Uganda Tickets control in Los Angeles

US Coast Guard in 
Boston Harbor



Example
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Example
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Example – scenario 1
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Example – scenario 1
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Example – scenario 1
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Example – scenario 1
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Example - mixed strategy
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Example - mixed strategy
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Example - mixed strategy
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Evolutionary Algorithm for Security Games (EASG)
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Żychowski A., Mańdziuk J. Evolution of Strategies in Sequential Security Games.
Proceedings of the 20th AAMAS conference, pages 1434-1442. 2021



EASG - crossover
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• Crossover role: combining existing solutions

• Each individual takes part in crossover with crossover rate probability pk

• After crossover each pure strategy may be deleted 
with probability equal to



EASG - mutation

• Mutation role: introduce some random perturbation to explore new areas of the 
search space

• Each individual is mutated with mutation rate probability pm

• Random pure strategy        is chosen which is modified starting from the random time 
step
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EASG mutation - example
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Mutation enhancements

• EASGn - EASG algorithm with repeated mutation.

• MANPS1, MANPSn - mutation adds new pure strategy - a uniformly
selected pure strategy is added with a uniformly sampled probability.

• MCP1, MCPn - mutation changes probability - a probability of randomly
selected pure strategy is uniformly changed.

• MSP1, MSPn - mutation switches probability - probabilities of two randomly
chosen pure strategies are switched.

• MDPS1, MDPSn - mutation deletes pure strategy -a randomly chosen pure
strategy is removed.

• MCWPS - mutation changes the weakest pure strategy - mutation is applied only 
to a pure strategy with the lowest payoff.

• MDWPS - mutation deletes the weakest pure strategy - pure strategy with
the lowest payoff is deleted
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Experimental setup

300 test game instances of 3 types:

• 150 Warehouse Games (WHG)

• 90 Search Games (SEG)

• 60 FlipIt Games (FIG)

30 independent runs for each game instance
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FlipIt Games 

Search Games 

Warehouse Games



Results

The average Defender’s payoff and the computation time for various mutation operators. The best results are bolded.

Results that are better than the baseline version of the algorithm (EASG) are underlined. In cases where the difference

between the baseline version (EASG) and a given variation is statistically significant the result is highlighted with a gray

background.



Conclusions
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• Repetition of mutation operation leads to improvement of SSGs
outcomes, though at the expense of significant increase in 
computation time.
• The proposed modifications offer a viable alternative to the base 

EASG formulation for cases when computational cost is less 
important.



Thank you
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EASG crossover - example
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MANPS - mutation adds new pure strategy - a uniformly selected pure strategy is 
added with a uniformly sampled probability
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MANPS



MCP - mutation changes probability - a probability of randomly selected pure 
strategy is uniformly changed
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MCP



MSP - mutation switches probability - probabilities of two randomly
chosen pure strategies are switched
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MSP



MDPS - mutation deletes pure strategy -a randomly chosen pure strategy is 
removed
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MDPS



MCWPS - mutation changes the weakest pure strategy - mutation is applied only 
to a pure strategy with the lowest payoff
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MCWPS



MDWPS - mutation deletes the weakest pure strategy - pure strategy with
the lowest payoff is deleted
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MDWPS



Example – scenario 2
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Example – scenario 2
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Example – scenario 2
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Example – scenario 2
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Example – scenario 2
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