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Abstract
This paper introduces the Augmented Decision Space Optimiza-
tion (ADSO) method for sparsity-driven optimization of mixed-
strategies in Stackelberg Security Games (SSGs). The proposed
method enhances traditional strategy optimization by combining
binary variables to represent the presence of pure strategies with
real-valued variables to refine their selection probabilities. Specifi-
cally, instead of waiting for an evolutionary process to gradually
discover sparse solutions, the binary variables in ADS allow the
real-valued variables to be switched on or off, thereby directly en-
forcing sparsity. This dual codification scheme achieves targets
such as sparsification and computational efficiency in large-scale
games. We demonstrate that ADS outperforms existing heuristic
methods, offering superior solution quality, scalability, and stabil-
ity. Empirical results across three different benchmark games show
that ADS generates compact strategies with minimal computational
overhead, achieving performance close to the exact methods. Fur-
thermore, state-of-the-art results are obtained for problems where
exact methods fail to scale effectively. Our framework promises
broad applicability beyond SSGs, encompassing a wide range of
game-theoretic and combinatorial optimization problems.

CCS Concepts
• Computing methodologies→ Genetic algorithms; Machine
learning approaches; Search methodologies.
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1 Introduction
Optimization of mixed strategies in game theory has been a piv-
otal research area, particularly in applications involving decision-
making under uncertainty [17] or adversarial conditions [12, 34].
Among these, Stackelberg Security Games (SSGs) [24] have emerged
as a critical framework, widely used in domains such as infrastruc-
ture protection [13, 23], cybersecurity [25, 33], or wildlife conser-
vation [8, 9]. SSGs involve a Leader-Follower paradigm, where the
Leader commits to a strategy, and the Follower responds optimally.
The primary challenge in solving these games is the identification
of optimal mixed strategies for the Leader, with an emphasis on
sparsity to alleviate practical resource constraints.

Existing approaches to mixed-strategy optimization in SSGs
leverage mathematical programming [3, 28], evolutionary algo-
rithms [36, 37], and learning-based techniques [22, 29]. Although
these methods have demonstrated efficacy, they frequently en-
counter limitations. Solutions often become computationally in-
tractable as the problem size increases, or they fail to effectively
handle sparsity constraints—an essential feature of many real-world
applications where a large number of redundant pure strategies
have zero probability of being selected.

To address these challenges, we propose a novel evolutionary
algorithm with an Augmented Decision Space (ADS) crafted for
mixed-strategy SSGs. A mixed-strategy is usually represented as
vector of real variables (forming a decision vector), where each vari-
able specifies the probability of enacting the corresponding pure
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strategy in a game setting. The core idea behind the ADS Optimiza-
tion (ADSO) framework is to expand this search space by splitting
each decision variable into a real part and a binary part. The real
values encode the selection probabilities of the pure strategies,
while the binary variables mandate the presence or absence of pure
strategies in the mixture. In this way, the binary variables explic-
itly encode for sparsity despite doubling the dimensionality of the
search space, and are therefore found to facilitate the enforcement
of sparsity conditions. Interestingly, this dual codification scheme
not only enables more efficient exploration of sparse solutions, but
also enhances convergence in high-dimensional constrained opti-
mization problems typical of real-world SSGs. While SSGs serve
as a compelling use case due to their complexity and real-world
relevance, the ADSO framework is expected to be equally suitable
for other game-theoretic models and optimization problems with
sparse solution characteristics. As a complement to established
sparsity-promotion techniques (e.g., 𝐿1 regularization) that modify
objective functions to guide optimization algorithms towards grad-
ual discovery of sparse solutions, ADSO helps directly impose the
desired condition.

In this paper, the evolutionary update equations of the ADSO
framework follow the principles of probabilisticmodel-based search [20]
and a rigorous performance evaluation of the methodology is car-
ried out. By leveraging sparsity to achieve scalability, this work
contributes to advancing the state-of-the-art in mixed-strategy op-
timization for SSGs and related game-theoretic problems. In the
special case of zero-sum games, the use of Danskin’s theorem [1]
allows to further accelerate the computation of evolutionary up-
dates in the maximin setting, thereby enhancing scalability and
robustness of the optimization process.

The key contributions of the paper are summarized below.

• Augmented decision spaces – introduction of a binary-real
dual codification scheme that allows real-valued variables
to be directly switched on or off during an evolutionary
process, thereby enforcing sparsity and compactness upon
mixed-strategy solutions;
• Sparse evolution – a novel algorithm that simultaneously
evolves the binary and real variables for strategy selection
and probability fine-tuning, enabling efficient exploration of
large solution spaces;
• Empirical validation – comprehensive evaluation across
three diverse benchmark games (Warehouse Games, Search
Games, and FlipIt Games), showcasing consistent perfor-
mance improvements over state-of-the-art methods;
• General applicability – establishing the potential of the
ADSO framework for broader use in game-theoretic and
optimization problems beyond Stackelberg Security Games.

2 Problem definition
A Stackelberg Security Game (SSG) involves two players: the Leader
(L) and the Follower (F), interacting over𝑚 time steps. At each time
step, both players simultaneously select an action. A pure strategy
𝜎𝑃 for player 𝑃 ∈ {𝐿, 𝐹 } is defined as a sequence of actions over
the time steps: 𝜎𝑃 = (𝑎1, 𝑎2, . . . , 𝑎𝑚). The set of all possible pure
strategies for 𝑃 is denoted as Σ𝑃 , and a mixed strategy 𝜋𝑃 ∈ Π𝑃 is

a probability distribution over Σ𝑃 , where Π𝑃 represents the set of
all mixed strategies for 𝑃 .

Given a pair of mixed strategies (𝜋𝐿, 𝜋𝐹 ), the players’ expected
payoffs are𝑈𝐿 (𝜋𝐿, 𝜋𝐹 ) and𝑈𝐹 (𝜋𝐿, 𝜋𝐹 ), respectively. The objective
of an SSG is to find the Stackelberg Equilibrium (SE), defined as the
pair of strategies (𝜋𝐿, 𝜋𝐹 ) satisfying the following conditions:

𝜋𝐿 = arg max
𝜋𝐿∈Π𝐿

𝑈𝐿 (𝜋𝐿, BR(𝜋𝐿)), (1)

BR(𝜋𝐿) = arg max
𝜋𝐹 ∈Π𝐹

𝑈𝐹 (𝜋𝐿, 𝜋𝐹 ). (2)

According to Eqs. 1 and 2, in SE, the Leader’s expected pay-
off is maximized, under the assumption that the Follower always
responds optimally, in terms of his/her payoff. According to the
definition of the Strong Stackelberg Equilibrium (SSE), if the Fol-
lower has multiple optimal responses, the one that maximizes the
Leader’s payoff is selected. This assumption ensures the existence
of an equilibrium, avoiding scenarios where the equilibrium may
not exist due to tie-breaking in the Follower’s favor.

In this model, both players select their strategies at the game’s
start (the Leader first, followed by the Follower) and commit to them
for the game’s duration. This sequential decision-making aligns
with real-world scenarios where the Leader commits to a visible
strategy that the Follower can observe and react to strategically. It
is guaranteed that for any mixed strategy of the Leader, there exists
at least one pure strategy for the Follower [6] that maximizes their
payoff, which narrows the search space for optimal responses.

There exist numerous variants of Stackelberg Security Games
(SSGs), which differ based on the specific scenarios they address,
the set of available actions, the rules governing the computation of
players’ payoffs, and the application domains. The detailed rules
and configurations for the three games analyzed in this paper are
provided in Section 5.

3 Related work
The existing methods for solving sequential Stackelberg Security
Games (SSGs) can be broadly classified into two categories: exact
methods and approximate approaches.

3.1 Exact Methods
Exact solutions typically leverage Mixed-Integer Linear Program-
ming (MILP) formulations to model SSGs as optimization problems
with specific target functions and constraints. These solutions are
precise but computationally expensive, especially for large-scale
games.

BC2015: The BC2015 algorithm [3] extends the DOBBS algo-
rithm [21], originally designed for one-step games, to handle
extensive-form games [6] by transforming them into sequence-
form representations. It significantly reduces the size of the linear
program from exponential to linear relative to the game tree size.

C2016: The C2016 approach [28] further improves efficiency
by focusing on the Stackelberg Extensive-Form Correlated Equilib-
rium (SEFCE). It computes SEFCE using linear programming and
iteratively converges to the Stackelberg Equilibrium by restricting
the Leader’s signaling options. Experimental results demonstrate
that C2016 is faster than BC2015, making it a preferred method for
calculating reference solutions.
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3.2 Heuristic Approaches
To address the limitations of exact methods in handling large games,
heuristic approaches have been developed, which provide near-
optimal solutions with better scalability.

O2UCT:O2UCTmethod [15, 16] uses Upper Confidence Bounds
applied to Trees (UCT) [18], a Monte Carlo Tree Search-based ap-
proach [26], to iteratively sample the Follower’s strategy space.
The Leader’s strategy is optimized under the assumption that the
sampled Follower’s strategy is optimal. O2UCT offers improved
scalability compared to MILP methods while maintaining competi-
tive solution quality.

EASG: The Evolutionary Algorithm for Security Games
(EASG) [35, 36] employs evolutionary principles to optimize the
Leader’s strategy. It begins with a randomly generated initial popu-
lation of solutions (chromosomes), each representing a potential
mixed strategy. Through iterative generations, the algorithm ap-
plies crossover and mutation operators to diversify the population
and improve solutions. The fitness of each chromosome is evalu-
ated based on the Leader’s payoff against the Follower’s optimal
response (which is identified by iterating over all possible Follower’s
pure strategies).

Crossover merges strategies from selected individuals to en-
hance exploitation, while mutation introduces new variations by
altering actions in selected strategies, encouraging exploration of
the search space. Chromosomes are refined to maintain simplicity,
reducing the number of strategies with low probabilities. The selec-
tion process promotes high-fitness individuals directly to the next
generation and uses a binary tournament to fill the population

CoEvoSG: The coevolutionary approach proposed in [37] ad-
dresses key inefficiency in the evaluation phase of the EASG. EASG
exhaustively evaluates the Leader’s strategy against all Follower
strategies, which can be expensive for larger games or continuous
Follower strategy spaces. Additionally, many Follower strategies
are either weak or redundant, contributing little to the search for
optimal responses. To overcome these challenges, coevolutionary
algorithms maintain two populations — Leader and Follower strate-
gies — which evolve in tandem. This reduces the computational
burden by narrowing the search space to a subset of representative
strategies for both players, while fostering competitive improve-
ments between populations.

3.3 Limitations
A primary limitation of the evolutionary approaches (EASG and
CoEvoSG) is their reliance on complex solution encodings and the
use of specialized evolutionary operators, such as mutation and
crossover, which are intricately designed for specific game types
and their corresponding rules. Consequently, these methods cannot
be seamlessly applied to other game types without substantial
modifications to the encoding schemes, operator implementations,
and algorithm parameterization. For instance, adapting them to
Signaling Games [38] would require extensive reengineering.

Moreover, this dependence on problem-specific encodings and
operators hinders the formulation of a general theoretical foun-
dation for the optimization techniques, making it challenging to
offer a definitive explanation of their empirical performance. As a

result, EA-based methods are relatively weak in their theoretical
grounding, a limitation acknowledged by their authors [36].

To alleviate these challenges, we propose a novel Augmented
Decision Space Optimization (ADSO) method which offers greater
generality and adaptability across different game types, and whose
update equations follow themathematical principles of probabilistic
model-based evolutionary search.

4 Sparse Evolution by ADSO
This section presents our new approach to mixed-strategy optimiza-
tion by searching ADS with evolutionary algorithms described by
population distribution models [4]. The model defines a distribution
over the set Π𝐿 of the Leader’s mixed strategies, where a mixed
strategy gives a probability distribution over the set Σ𝐿 of pure
strategies. In short, the ADSO framework defines and optimizes a
distribution over distributions.

Let 𝑥𝑖 be a decision variable that assigns a probability measure
to the 𝑖-th pure strategy. Then, assuming 𝑛 pure strategies, 𝜋𝐿 =

[𝑥1, 𝑥2, . . . , 𝑥𝑛] where 𝑥𝑖 ≥ 0 and
∑
𝑥𝑖 = 1 . In the proposed dual

codification scheme, we split 𝑥𝑖 into two decision variables, namely
𝑥𝑖 and 𝑥𝑖 , such that:

𝑥𝑖 = 𝑥𝑖 · 𝑥𝑖 ,
where 𝑥𝑖 is real-valued and 𝑥𝑖 is a binary variable indicating the
switching on (𝑥𝑖 = 1) or switching off (𝑥𝑖 = 0) of the 𝑖-th pure
strategy in the mixture. Thus the value 𝑥𝑖 is interpreted as the
probability measure of the 𝑖-th pure strategy only if 𝑥𝑖 = 1. By
reformulating the decision space in this manner, the number of
decision variables is effectively doubled, creating an augmented de-
cision vector x′ = (x̂, x̃) = [𝑥1, 𝑥1, 𝑥2, 𝑥2, . . . , 𝑥𝑛, 𝑥𝑛] that explicitly
encodes for sparsity through the binary variables x̂.

During evolutionary search, we consider sampling the binary
variables 𝑥𝑖 independently from the Bernoulli distribution:

𝑃 (𝑥𝑖 ) = 𝑞
𝑥𝑖
𝑖
· (1 − 𝑞𝑖 )1−𝑥𝑖 ,

where 𝑞𝑖 represents the probability that 𝑥𝑖 = 1. Simultaneously, the
vector x̃ of real-valued decision variables [𝑥1, 𝑥2, . . . , 𝑥𝑛] is assumed
to follow a multivariate normal distribution 𝑝 (x̃) = N(𝜇x̃, Σx̃), pa-
rameterized by mean 𝜇x̃ and covariance Σx̃. The overall probability
distribution underlying the population of solutions in the ADS can
then be expressed as:

𝑝 (x′) = N(𝜇x̃, Σx̃) ·
𝑛∏
𝑖=1

𝑞
𝑥𝑖
𝑖
· (1 − 𝑞𝑖 )1−𝑥𝑖 ,

which is parameterized by 𝜇x̃, Σx̃, 𝑞1, 𝑞2, . . . , 𝑞𝑛 .
Let 𝑓 (x′) be the pay-off of the Leader given the mixed strategy

encoded by the decision vector x′. That is, 𝑓 (x′) = 𝑈𝐿 (𝜋𝐿, BR(𝜋𝐿)),
where 𝜋𝐿 (x̂, x̃) = 1∑

𝑥𝑖 ·�̃�𝑖 [𝑥1 · 𝑥1, 𝑥2 · 𝑥2, . . . , 𝑥𝑛 · 𝑥𝑛]. Based on the
unifying picture of information-geometric optimization [20], the
objective function can be recast as maximizing the expected payoff
for the Leader as:

arg max
𝝁 x̃,Σx̃,𝑞1,𝑞2,...,𝑞𝑛

𝐹 =
∑︁
∀x̂

(∫
𝑓 (x′) · 𝑝 (x̃) 𝑑x̃

)
𝑃 (x̂) . (3)

Following the Leibniz integral rule and the log-likelihood trick, the
gradients of 𝐹 with respect to the parameters of the binary and the
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normal distributions are:

∇𝑞1,...,𝑞𝑛𝐹 =
∑︁
∀x̂

(∫
𝑓 (x′) · 𝑝 (x̃) 𝑑x̃

)
∇𝑞1,...,𝑞𝑛

( 𝑛∑︁
𝑖=1
(𝑥𝑖 log(𝑞𝑖 ) + (1 − 𝑥𝑖 ) log(1 − 𝑞𝑖 ))

)
𝑃 (x̂) (4)

and:

∇𝝁 x̃,Σx̃𝐹 =
∑︁
∀x̂

(∫
𝑓 (x′) · ∇𝝁 x̃,Σx̃ (log(N (𝝁x̃, Σx̃))) · 𝑝 (x̃) 𝑑x̃

)
𝑃 (x̂) .

(5)

4.1 Evolutionary update equations
An evolution strategy employing the aforementioned gradients can
be crafted by sampling and evaluating populations of candidate
solutions fromN(𝝁x̃, Σx̃)

∏𝑛
𝑖=1 𝑞

𝑥𝑖
𝑖
· (1−𝑞𝑖 )1−𝑥𝑖 to compute Monte

Carlo estimates of (4) and (5). These estimates would then be used
to iteratively update the population distribution model. To this end,
the ADSO algorithm maintains two distributions:
• a multivariate normal distribution N(𝜇x̃, Σx̃) for the real-
valued variables x̃, and
• independent Bernoulli distributionswith parameters𝑞1, ..., 𝑞𝑛
for the binary vector x̂.

A new solution is generated by concatenating points sampled from
each distribution. The concatenated solution corresponds to amixed
strategy 𝜋𝐿 that is evaluated based on the Leader’s expected payoff
against the Follower’s best response (see Eq. 1).

Monte Carlo estimates of (4) and (5) can, however, depict high
variance due to the dimensionality of the ADS. To combat this
curse of dimensionality, we make certain simplifying assumptions
to arrive at the update equations of ADSO. Specifically, while ap-
proximating (4), the distribution 𝑝 (x̃) is assumed to be concentrated
at its mean with Σx̃ → 0, such that

∫
𝑓 (x′) · 𝑝 (x̃) 𝑑x̃→ 𝑓 (x̂, 𝝁x̃).

Likewise, while approximating (5), the variance of the Bernoulli
distribution is deemed sufficiently small such that 𝑃 (x̂) may be
lumped at the current best binary vector x̂∗. This reduces (5) to:

∇𝝁 x̃,Σx̃𝐹 =

∫
𝑓 (x̂∗, x̃) · ∇𝝁x̃,Σx̃ (log(N (𝝁x̃, Σx̃))) · 𝑝 (x̃) 𝑑x̃. (6)

ADSO iteratively switches between updating the binary distribution
by (4) and the normal distribution by (6).

4.1.1 Binary distribution updates. In the gradient on the right of
(4), the partial derivative with respect to probability 𝑞𝑖 is:

𝜕

𝜕𝑞𝑖

( 𝑛∑︁
𝑖=1
(𝑥𝑖 log(𝑞𝑖 ) + (1 − 𝑥𝑖 ) log(1 − 𝑞𝑖 ))

)
=

𝑥𝑖 − 𝑞𝑖
𝑞𝑖 (1 − 𝑞𝑖 )

.

Given a population of 𝑁 binary vectors drawn from 𝑃 (x̂), we there-
fore get the following stochastic gradient update:

𝑞𝑖 ← 𝑞𝑖 + 𝜂𝑖∇𝑞𝑖 𝐹 ≈ 𝑞𝑖 +
𝜂𝑖

𝑁

𝑁∑︁
𝑗=1

𝑓𝑠 (x̂𝑗 , 𝝁x̃)
𝑥
𝑗
𝑖
− 𝑞𝑖

𝑞𝑖 (1 − 𝑞𝑖 )
,

where 𝑓𝑠 is a rank-based shaping of the original fitness function 𝑓

that provides invariance under all monotone transformations of 𝑓
[20]. The fittest binary vector in the population is denoted x̂∗. The
fitness shaping employed in our implementation coincides with
the so-called population-based incremental learning algorithm [2].

Moreover, 𝜂𝑖 = 𝜂 𝑞𝑖 (1 − 𝑞𝑖 ) to avoid instability due to singularities
in the update when 𝑞𝑖 approaches 1 or 0. The final update equation
is then:

𝑞𝑖 ← 𝑞𝑖 +
𝜂

𝑁

𝑁∑︁
𝑗=1

𝑓𝑠 (x̂𝑗 , 𝝁x̃) (𝑥
𝑗
𝑖
− 𝑞𝑖 ) .

with 𝜂 being a constant learning rate.

4.1.2 Real-valued distribution updates. The stochastic gradient up-
date of normal distributions governed by (6) is at the core of a
family of natural evolution strategies [31]. In our implementation,
we directly adopt the CovarianceMatrix Adaptation Evolution Strat-
egy (CMA-ES) [10, 11], a well-established member of this family,
for real-valued distribution updates. Details of the algorithm are
omitted for the sake of brevity.

4.2 Leveraging Danskin’s theorem
A computational bottleneck in solving SSGs stems from the need
to determine the Follower’s best response corresponding to all
candidate mixed strategies (encoded by x′) of the Leader. Danskin’s
theorem, often used in the context of maximin problems [1], helps
alleviate this bottleneck in the case of zero-sum SSGs.

A zero-sum problem is attained when 𝑈𝐹 = −𝑈𝐿 , which trans-
forms the SSG to:

max
𝜋𝐿∈Π𝐿

min
𝜋𝐹 ∈Π𝐹

𝑈𝐿 (𝜋𝐿, 𝜋𝐹 ).

Considering 𝑓 (x̂∗, x̃) = min𝜋𝐹 ∈Π𝐹
𝑈𝐿 (𝜋𝐿 (x̂∗, x̃), 𝜋𝐹 ), Danskin’s

theorem states [7]:
𝜕𝑓

𝜕x̃
=

𝜕𝑈𝐿 (𝜋𝐿 (x̂∗, x̃), BR(𝜋𝐿))
𝜕x̃

, (7)

as long as𝑈𝐿 is a continuous function and BR(𝜋𝐿) is unique. In other
words, changes to BR(𝜋𝐿) in a neighborhood of small variations to
x̃ can be ignored. Leveraging this insight, we first note that in the
limit of small variations, (6) simplifies as:

lim
Σx̃→0

∇𝝁 x̃𝐹 =
𝜕𝑓 (x̂∗, 𝝁x̃)

𝜕𝝁x̃
=

𝜕𝑈𝐿 (𝜋𝐿 (x̂∗, 𝜇x̃), BR(𝜋𝐿))
𝜕𝝁x̃

. (8)

Consequently, while running CMA-ES, best responses need not be
recomputed for every candidate solution sampled from a (narrow)
normal distribution. In each iteration, the Follower’s best response
shall be derived only once corresponding to x′ = (x̂∗, 𝝁x̃), reducing
computational cost by a factor of 𝑁 given population size 𝑁 .

5 Experimental setup
5.1 Benchmark games
5.1.1 Zero-sum Warehouse Games. (WHGs), as introduced in [14],
are inspired by scenarios involving protection of real estate assets,
such as warehouses or residential buildings. These games are for-
malized on undirected graphs consisting of 𝑛 vertices and evolve
over𝑚 discrete time steps. A subset of these vertices is designated
as targets (𝑇 ), representing critical points to be defended. In this
representation, graph edges correspond to corridors, while vertices
symbolize rooms. Figure 1 presents example of a WHG scenario.

At the beginning of the game, the Leader and the Follower are
positioned at predetermined starting vertices. During each time
step, a player can either move to a neighboring vertex (connected
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Figure 1: Example WHG scenario [14]: the warehouse lay-
out (left) and its corresponding graph representation (right)
depict the payoffs associated with the players for the respec-
tive game outcomes. Green rectangular vertices represent
targets, while the red triangular vertex and blue circular ver-
tex denote the starting positions of the Follower and Leader,
respectively.

by an edge) or remain in the currently occupied vertex. The game
concludes under one of the following conditions:

(1) Capture: Both players occupy the same vertex 𝑣 at the same
time step, signifying that the Follower is “caught.” Payoffs
are then assigned as 𝑈 𝑣

𝐷+ > 0 for the Leader and 𝑈 𝑣
𝐴− < 0

for the Follower.
(2) Successful Attack: The Follower reaches a target vertex

𝑡 ∈ 𝑇 without the Leader also occupying it. This outcome
indicates a successful attack, and payoffs are given as𝑈 𝑡

𝐷− <

0 for the Leader and𝑈 𝑡
𝐴+ > 0 for the Follower.

(3) NoEvent: If neither of the above occurs, both players receive
a payoff of 0.

In our experiments we considered only zero-sum WHGs which
means𝑈 𝑣

𝐷+ = −𝑈
𝑣
𝐴− and𝑈 𝑡

𝐷− = −𝑈 𝑡
𝐴+. To evaluate algorithms per-

formance, 150 WHG instances were generated using various combi-
nations of𝑚 and 𝑛:𝑚 ∈ {3, 4, 5, 6, 8, 10} and 𝑛 ∈ {15, 20, 25, 30, 40},
with 5 games created for each (𝑚,𝑛) pair. Player payoffs were sam-
pled uniformly from the interval [−1, 1]. The number of target
vertices was determined by the graph size as |𝑇 | =

⌈
𝑛
5
⌉
. The under-

lying graph structures were generated using the Watts–Strogatz
random graph model [30] with an average vertex degree 𝑑avg = 3.

5.1.2 Search Games. (SEGs), introduced in [3], are played on di-
rected graphs where the Follower’s objective is to navigate from
a fixed initial vertex to one from the set of designated target ver-
tices. Unlike in Warehouse Games (WHG), SEGs feature a Leader
possessing multiple defending units, each constrained to operate
within a specific subset of the graph’s vertices. Figure 2 presents
an example of SEG scenario.

A key distinction between SEG and WHG is the property of par-
tial observability. In SEGs, the Follower leaves detectable traces at
the vertices they visit. These traces can be uncovered by a Leader’s
unit if it visits the same vertex in subsequent time steps. However,
the Follower has the ability to erase traces by remaining in the
vertex for an additional time step (i.e., staying in the same vertex
for two or more consecutive time steps).

The conditions for terminating the game are similar toWHG: the
Leader receives a positive payoff for apprehending the Follower, the
Follower gains a reward for successfully reaching a target vertex

Figure 2: Example of Search Game. A red triangle denotes
the Follower’s starting vertex, green rectangles are targets.
Three rounded groups of vertices represent restricted subsets
of nodes within which the Leader’s units can freely move.

without interception, or the game concludes with neutral payoffs if
neither condition is met within the allotted time steps.

The inclusion of trace dynamics and multiple Leader units fun-
damentally differentiates SEGs from WHGs. Consequently, the
Leader’s strategy in SEGs is more complex, requiring not only a
sequence of moves but also a reactive component to respond to
the detection of the Follower’s traces. This strategic extension is
elaborated in [36] and adopted in this study. Additionally, unlike
WHGs, SEGs are not zero-sum games.

For evaluation, 150 SEG instances were generated, with param-
eters including time steps𝑚 ∈ {3, 4, 5, 6, 8, 10} and the number of
graph vertices 𝑛 ∈ {15, 20, 25, 30, 40}. The number of target vertices
|𝑇 | varied between 2 and 6.

5.1.3 FlipIt Games. (FIGs), as introduced in [27], are inspired by cy-
bersecurity scenarios where the Follower seeks to gain control over
elements of the network infrastructure (e.g., computers, routers,
mobile devices) while the Leader attempts to reclaim control of
compromised units.

These games are played on directed graphs with 𝑛 vertices over
𝑚 discrete time steps. In each time step, both players simultaneously
choose one vertex to attempt to take control of (referred to as a
flip action). Initially, all vertices are under the Leader’s control, and
only a subset of vertices, known as entry nodes, is accessible to
the Follower. This setup reflects real-world scenarios where certain
parts of a network (e.g., publicly accessible interfaces) are exposed
to external threats. The Follower begins their intrusion from one
of these entry nodes.

A flip attempt is successful if two conditions are simultaneously
satisfied:

• The player already controls at least one of the predecessor
vertices of the node to be flipped (unless the node is an entry
node).
• The current controller of this node does not simultaneously
attempt to flip that same node.

Each vertex is associated with two values: a positive reward for
controlling the node and a negative cost for attempting a flip action.
The final payoff for a player is calculated as the sum of the rewards
from all nodes controlled by that player over all time steps, minus
the cumulative costs of all flip attempts (whether successful or not)
made during the game. Figure 3 presents a sample FIG scenario.
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Figure 3: Example FIG scenario [37] with two entry nodes
(routers) on the left. Numbers below each component denote
a reward for controlling the node (left) and a cost of a flip
attempt (right).

In the experimental setup, 150 FIG instances were generated
with parameters𝑚 ∈ {3, 4, 5, 6, 8, 10} and 𝑛 ∈ {5, 10, 15, 20, 25}. For
each (𝑚,𝑛) pair, 5 games were tested with random payoffs, where
rewards were sampled from the interval (0, 1) and costs from (−1, 0).
Graphs were constructed using the Watts–Strogatz model [30] with
an average vertex degree 𝑑avg = 3.

The experiments were conducted under the No-Info variant [5],
meaning players are unaware of whether their flip attempts succeed.
Consequently, their strategies are independent of the opponent’s
actions, reflecting a high level of uncertainty in decision-making.

5.2 Algorithm setup
To explore the real-valued part of the augmented decision space,
we employed the well-established Covariance Matrix Adaptation
Evolution Strategy (CMA-ES). CMA-ES was selected due to its
popularity, practical effectiveness and robustness to hyperparame-
ter settings. We utilized the CMA-ES implementation available at
github.com/yn-cloud/CMAES.NET. Our overall implementation of
ADSO with dual codification scheme was developed in C#, and the
source code will be made publicly accessible upon the publication
of the paper. All computational experiments were conducted on an
Intel Xeon Silver 4116 processor with a clock speed of 2.10 GHz.

For all tested evolutionary algorithms, the population size was
fixed at 200. The stop condition included two cases: either a max-
imum of 105 fitness function evaluations (corresponding to the
Leader’s expected payoff calculations) were performed or 20 con-
secutive generations without improvement in the best solution
took place. For the ADSO algorithm, the learning rates were set
to 10−4. We conducted additional experiments varying the key hy-
perparameters and observed that ADSO consistently maintains its
performance with only minor variations in convergence speed.

An additional important optimization is the solution representa-
tion scheme. Since all the games we consider are played on graphs,
we optimized the probabilities assigned to graph edges rather than
optimizing the probabilities of each pure strategy. Specifically, this
means assigning probabilities to the selection of edge 𝑒 in time step
𝑚𝑖 . This approach significantly reduced the size of the search space
(𝑚 × |𝐸 | instead of (𝑑𝑎𝑣𝑔)𝑚 , where𝑚 is the number of game time
steps, |𝐸 | is the number of graph edges and (𝑑𝑎𝑣𝑔)𝑚 is the average
degree of graph nodes).

No extensive parameter optimization was conducted to avoid
biasing the algorithm toward any specific game setup. Instead, the
parameters were chosen based on a set of 5 randomly generated
WHGs and insights derived from the literature.

6 Results
The proposed Augmented Decision Space Optimization (ADSO)
algorithm was evaluated against five other methods: C2016, O2UCT,
EASG, and CoEvoSG, described in Section 3, and CMA-ES. CMA-
ES was directly applied to optimize the Leader’s decision space,
represented as a probability vector over all possible pure strategies.

The methods were compared based on three primary criteria:
solution quality (Leader’s expected payoff), computational scalabil-
ity, and stability. The evaluation utilized 450 game instances (150
instances for each of WHG, SEG, and FIG), as described in the previ-
ous section. All reported results are averaged over 30 independent
runs per game instance and further aggregated by game type.

6.1 Payoffs
Tables 1, 2, and 3 summarize the average Leader’s payoffs for WHG,
SEG, and FIG games, respectively. The results are presented as a
function of the number of graph nodes (𝑛) and time steps (𝑚). A
dash ("–") indicates that the corresponding algorithm failed to solve
certain test game instances within the computational limit of 100
hours per instance.

Table 1: Average Leader’s payoffs with respect to the number
of graph nodes (top) and time steps (bottom) for Warehouse
Games. The best results are bolded.

𝑛 C2016 O2UCT EASG CoEvoSG CMA-ES ADSO
15 0.052 0.051 0.051 0.050 0.049 0.051
20 0.054 0.053 0.052 0.051 0.050 0.053
25 0.048 0.046 0.045 0.044 0.044 0.047
30 - 0.044 0.042 0.040 0.040 0.045
40 - - 0.040 0.038 0.038 0.041
𝑚 C2016 O2UCT EASG CoEvoSG CMA-ES ADSO
3 0.043 0.043 0.043 0.043 0.043 0.043
4 0.052 0.050 0.050 0.049 0.048 0.051
5 0.055 0.054 0.053 0.052 0.051 0.054
6 0.058 0.056 0.054 0.052 0.052 0.055
8 - 0.053 0.051 0.049 0.048 0.052
10 - - 0.048 0.046 0.046 0.048

The results demonstrate that direct application of CMA-ES to the
Leader’s decision space is suboptimal. A detailed analysis indicates
that the mixed strategies produced by this approach often include
a large number of pure strategies with negligible probabilities. In
contrast, the optimal mixed strategies computed by C2016 typically
include no more than 10 pure strategies, with an average of 5.74.
Many of the CMA-ES pure strategies with minimal probabilities are
redundant and should ideally be excluded from the final solution.
However, the standard CMA-ES approach, without augmentation
of the decision space, is unable to effectively eliminate these super-
fluous strategies. This limitation is a key factor contributing to the
inferior performance of CMA-ES compared to ADSO.

https://github.com/yn-cloud/CMAES.NET
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Table 2: Average Leader’s payoffs with respect to the num-
ber of graph nodes (top) and time steps (bottom) for Search
Games. The best results are bolded.

𝑛 C2016 O2UCT EASG CoEvoSG CMA-ES ADSO
15 0.122 0.116 0.115 0.115 0.114 0.119
20 0.117 0.112 0.106 0.104 0.104 0.114
25 - 0.123 0.117 0.116 0.115 0.124
30 - - 0.136 0.135 0.134 0.137
40 - - - 0.152 0.151 0.154
𝑚 C2016 O2UCT EASG CoEvoSG CMA-ES ADSO
3 0.137 0.126 0.118 0.118 0.117 0.128
4 0.124 0.113 0.110 0.109 0.108 0.117
5 0.106 0.093 0.090 0.087 0.087 0.101
6 - 0.129 0.123 0.123 0.123 0.134
8 - - 0.112 0.111 0.110 0.117
10 - - - 0.144 0.144 0.149

Table 3: Average Leader’s payoffs with respect to the number
of graph nodes (top) and time steps (bottom) for FlipIt Games.
The best results are bolded.

𝑛 C2016 O2UCT EASG CoEvoSG CMA-ES ADSO
5 0.890 0.887 0.886 0.886 0.880 0.889
10 0.854 0.851 0.847 0.846 0.839 0.852
15 0.811 0.807 0.802 0.800 0.795 0.809
20 - 0.784 0.78 0.775 0.774 0.786
25 - - - 0.748 0.745 0.757
𝑚 C2016 O2UCT EASG CoEvoSG CMA-ES ADSO
3 0.823 0.821 0.820 0.817 0.816 0.822
4 0.817 0.812 0.808 0.805 0.802 0.814
5 0.810 0.801 0.798 0.791 0.787 0.806
6 - 0.792 0.792 0.791 0.789 0.800
8 - 0.785 0.784 0.781 0.776 0.788
10 - - 0.780 0.778 0.777 0.780

The proposed ADSO method addresses this issue by incorporat-
ing an augmented binary component, which improves scalability
by promoting sparsity in the resulting mixed strategies. On average,
ADSO-generated strategies contain 6.76 pure strategies, a signifi-
cant improvement in sparsity compared to standard CMA-ES (32.73
pure strategies in average). Similarly, EASG and CoEvoSG achieve
increased sparsity through more complex mechanisms involving
crossover operations, in which pure strategies are probabilistically
removed based on their likelihood of being selected (inversely pro-
portional to their probability). These mechanisms result in final
strategies with an average of 6.83 pure strategies for EASG and 7.12
for CoEvoSG.

Among the heuristic methods, ADSO achieved the best perfor-
mance across all benchmarks, producing results close to those of the
exact C2016 algorithm. For WHG, SEG, and FIG games, ADSO’s su-
periority over other heuristic methods was statistically significant
in 97/150 (64.7%), 114/150 (76.0%), and 127/150 (84.7%) instances,

respectively. Statistical significance was established using a one-
tailed paired 𝑡-test at a significance level of 0.05, with normality
verified using the Shapiro-Wilk test.

The exact MILP method (C2016) was able to solve 60 WHG, 60
SEG, and 30 FIG test instances within the computational time limit.
Table 4 reports the number of instances in which each method
achieved the same optimal strategy as C2016 (i.e., where the dif-
ference in the Leader’s payoff was less than 𝜀 = 0.0001). ADSO
produced optimal solutions in 49/60 (81.7%) WHG, 41/60 (68.3%)
SEG, and 21/30 (70.0%) FIG cases. The average deviations between
ADSO’s outcomes and the optimal results were 0.0018 for WHG,
0.0087 for SEG, and 0.0107 for FIG.

Table 4: The number of games in which each method success-
fully identified the optimal strategy (achieved a Leader’s pay-
off difference of less than 𝜀 = 0.0001 compared to the C2016
solution). The best results (excluding C2016) are bolded.

C2016 O2UCT EASG CoEvoSG CMA-ES ADSO
WHG 60 (100%) 39 (65.0%) 43 (71.7%) 38 (63.3%) 15 (25.0%) 49 (81.7%)
SEG 60 (100%) 36 (60.0%) 26 (43.3%) 17 (28.3%) 12 (20.0%) 41 (68.3%)
FIG 30 (100%) 17 (56.7%) 19 (63.3%) 16 (53.3%) 5 (16.7%) 21 (70.0%)

6.2 Scalability analysis
Figure 4 illustrates the scalability analysis of the tested methods as
a function of the number of graph nodes. Among them, CoEvoSG
demonstrates near-constant computation time, regardless of game
size. In contrast, other heuristic methods (O2UCT, EASG, CMA-
ES, ADSO) scale approximately linearly, while the exact method
(C2016) exhibits exponential scaling.

The primary computational cost for the heuristic methods arises
from evaluating the Leader’s strategy. This process involves deter-
mining the optimal Follower response, which is typically achieved
by iterating over all Follower’s pure strategies to identify the best
one. CoEvoSG improves this by maintaining fixed-size populations
for both the Leader and the Follower, irrespective of the game
parameters. Leader strategies are evaluated only against those ad-
versarial counterparts in the Follower population, allowing it to
avoid full evaluations against all potential adversary strategies and
highly reducing the dependence on the game size. This advantage
is the key factor behind CoEvoSG’s superior scalability in terms
of computation time, but at the cost of some deterioration in the
quality of the best solutions found.

Among the remaining heuristic methods, ADSO achieves the
lowest computation time, outperforming CMA-ES. This result may
appear counterintuitive, as CMA-ES maintains a single distribution,
whereas ADSO involves an additional binary distribution. A deeper
analysis reveals that ADSO’s efficiency stems from the reduced
time spent on strategy evaluations. As noted earlier, mixed strate-
gies generated by ADSO typically include significantly fewer pure
strategies compared to those produced by CMA-ES. By reducing
the number of Leader-Follower strategy pairs through sparsity-
driven optimization, ADSO minimizes the computational overhead
required for payoff calculations, outperforming existing heuristic
methods.
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Figure 4: Scalability of tested methods: computation time (logarithmic scale) with respect to the number of graph nodes (𝑛).

6.3 Stability
Since the proposedmethod is non-deterministic, its ability to achieve
optimal solutions (as discussed in the previous subsection) is not
sufficient for a comprehensive evaluation. An equally important
aspect is the algorithm’s consistency in reproducing high-quality
results across multiple runs.

To assess the stability of ADSO, we analyzed the standard devia-
tions of the Leader’s payoffs across 30 runs per game. In 113 out
of 450 tested games (25.1%), the standard deviation was equal to 0,
indicating perfect stability. The mean standard deviation across all
games was 0.0054, with the highest observed value being 0.1712,
which corresponds to 33.1% of the possible payoff range for that
particular game.

Table 5 presents the mean and maximum standard deviations
for all tested methods.

Table 5: The mean and maximum standard deviations of the
Leader’s payoffs across 30 runs, calculated over all tested
games. The best results (excluding C2016) are bolded.

C2016 O2UCT EASG CoEvoSG CMA-ES ADSO

WHG mean 0.000 0.046 0.045 0.051 0.051 0.047
max 0.000 0.068 0.077 0.081 0.087 0.076

SEG mean 0.000 0.059 0.054 0.068 0.058 0.057
max 0.000 0.111 0.105 0.120 0.119 0.102

FIG mean 0.000 0.059 0.066 0.071 0.061 0.059
max 0.000 0.175 0.184 0.189 0.192 0.171

Among the 111 games where ADSO found the optimal solution,
the best solution was reproduced in all 30 runs in 84 cases (76.7%).
For 97 of these games (87.4%), the optimal solution was achieved in
more than 90% of the runs. At the other extreme, in 3 cases (2.4%),
the optimal strategy was identified in only one run. These results
suggest that, despite the inherent randomness of the method, ADSO
demonstrates relatively high stability and consistently reproduces
optimal solutions for the majority of tested games.

7 Conclusions
In this work, we introduced a novel approach for solving mixed-
strategy optimization problems in Stackelberg Security Games

(SSGs) - Augmented Decision Space Optimization (ADSO) frame-
work. The core innovation of the proposed methodology lies in
the use of an augmented decision space, which incorporates both
binary variables to encode the presence of pure strategies and real-
valued probabilities to refine their usage. This dual representation
leverages sparsity to achieve scalability.

The proposed solution was tested on 3 different SSGs:Warehouse
Games, Search Games, and FlipIt Games with 450 game instances
overall. The ADSO framework demonstrates substantial advantages
over existing methods, consistently achieving the results close to
the optimal solutions produced by exact methods, while maintain-
ing superior performance compared to state-of-the-art heuristic
approaches. The proposed method effectively reduces redundant
strategies in the mixed solution space, generating more compact
strategies. By leveraging sparsity, ADSO also reduces the compu-
tational overhead associated with strategy evaluations. Despite
its probabilistic nature, ADSO displays high consistency across
multiple runs, with a low variance in the quality of solutions.

We believe the ADSO framework represents a significant step for-
ward in the optimization of mixed strategies for SSGs. Beyond SSGs,
the ADSO framework may prove to be well-suited for other game-
theoretic models and combinatorial optimization problems where
sparsity and scalability are crucial, such as adversarial multi-agent
reinforcement learning [32] and large-scale resource allocation
problems [19].

Future work could explore extending ADSO to other game-
theoretic models, such as signaling games or dynamic multi-stage
interactions, and integrating this framework with reinforcement
learning techniques for adaptive decision-making in real-time ap-
plications.
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