
Sequential Stackelberg Games with Bounded
Rationality

Jan Karwowski∗, Jacek Mańdziuk, Adam Żychowski
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Abstract

Stackelberg Games (SGs) assume the perfect rationality of players. However,

in real-life situations modeled by SGs, the followers may act not perfectly ra-

tionally, as their decisions may be affected/bounded by biases of various kinds,

reflecting human behavior in the real world. Anchoring Theory (AT) is one of

the popular bounded rationality (BR) models. It postulates that humans have a

tendency to flatten the probabilities of the available options, i.e. their probabil-

ity distribution is perceived as more uniform than is actually the case. This pa-

per proposes a formulation of AT in sequential extensive-form SGs (ATSG) and

its linearized approximate version (ATSGL) suitable for Mixed-Integer Linear

Program (MILP) solution methods. ATSGL is implemented in three MILP/LP

state-of-the-art methods for solving sequential SGs and compared with two re-

cent non-MILP metaheuristic approaches based on the original non-simplified

ATSG formulation, which rely on Monte Carlo sampling (O2UCT ) and Evo-

lutionary Algorithms (EASG), respectively. Experimental evaluation indicates

that non-MILP heuristic approaches provide better solutions and scale better in

time than MILPs in the AT setting. The efficacy of ATSG is further evaluated

in experiments involving humans as followers, which show that it is more ad-

vantageous to use the ATSG leader’s strategy than the Stackelberg Equilibrium

strategy, which assumes the perfect rationality of the follower. The results con-

firm the existence of the human follower’s AT-bias and the possibility to exploit
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it by the leader. An additional advantage of heuristic methods is the flexibility

of the potential BR formulation they are able to incorporate.

Keywords: Sequential Games, Stackelberg Games, Bounded Rationality,

Anchoring Theory, MILP

1. Introduction

Stackelberg Games (SGs) [1, 2] are a game-theoretic model which has at-

tracted considerable interest in recent years, in particular in the Security Games

area [3]. In its simplest form, a Stackelberg Security Game (SSG) has two play-

ers: a leader who commits to a (mixed) strategy first, and a follower who makes5

their commitment knowing the decision of the leader. The above asymmetry of

the players occurs in many practical situations (e.g. in commerce [4, 5, 6]) or

strongly corresponds to the interactions between law enforcement (leader) and

smugglers, terrorists or poachers (followers) modeled by SSGs [7, 8, 9, 10].

A fundamental assumption in SGs is that the follower makes an optimal,10

perfectly rational decision exploiting knowledge of the leader’s commitment.

However, in real-life scenarios followers may suffer from cognitive biases, unwill-

ingness to cooperate (in the case of multiple leaders / followers) [11] or bounded

rationality, which leads them to suboptimal decisions [12, 13, 7].

On a general note, bounded rationality (BR) [14] in problem-solving refers15

to the limitations of decision-makers that result in suboptimal actions. Except

for limited cognitive abilities, BR can be attributed to partial knowledge about

the situation/problem, limited resources, or imprecisely defined goals [15, 16].

The most popular models of BR are: Prospect Theory (PT) [17], Anchoring

Theory (AT) [18], Quantal Response (QR) [19] and Framing Effect (FE) [20].20

Each of these models makes specific problem-related assumptions and each of

them has some degree of experimental justification, though none of them could

be regarded as widely agreed-upon or a leading BR formulation.

The concept of BR plays an important role in SSGs, as in real-world ap-

plications of SSGs the follower’s role is performed by humans, e.g. terrorists,25
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poachers or criminals, who usually suffer from BR limitations. However, due to

the inherent non-linearity of BR models the implementations proposed so far in

the literature refer to single-step games only.

1.1. Contribution

In this paper, the AT formulation for single-step normal-form games is ex-30

tended to the case of sequential extensive-form games (abbreviated as ATSG).

Furthermore, an approximation of ATSG is proposed that avoids non-linear con-

straints (ATSGL), suitable for a wide range of MILP/LP (Mixed Integer Linear

Program/Linear Program) approaches. ATSGL is implemented for three state-

of-the-art methods for solving extensive-form SSGs [21, 22, 23]. Furthermore,35

two other non-MILP heuristic methods for solving SSG are adequately mod-

ified to incorporate ATSG: one that relies on Monte Carlo sampling [24, 25]

and another one which employs Evolutionary Algorithms [26]. All five methods

are experimentally evaluated on three sets of test games: Warehouse Games

(WHG) [27, 28], Warehouse Games with more diverse payoffs (WNZ) [25, 28]40

and Search Games (SEG) [29, 23].

Additionally, the efficacy of the proposed AT implementation is tested online

on a dedicated game-playing portal [28] by volunteers (university students) who

assume the role of the follower.

In summary, the main contributions of this paper can be listed as follows:45

(i) Proposition of ATSG, i.e. an Anchoring Theory formulation in sequential

(multi-step) Stackelberg Games;

(ii) Efficient MILP-suitable linearized simplification of ATSG (ATSGL);

(iii) Implementation of ATSGL in three MILP/LP state-of-the-art methods for

solving sequential Stackelberg Games (two exact and one approximate);50

(iv) Implementation of ATSG in two approximate non-MILP approaches to

Stackelberg Games relying on Monte Carlo sampling [25] and Evolutionary

Algorithms [26], respectively;
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(v) Experimental evaluation with respect to the quality of payoffs and time

efficiency of the five above-mentioned approaches in BR settings, on three55

sets of benchmark games;

(vi) Evaluation of the efficacy of ATSG in online experiments involving humans

playing the role of the follower.

This paper substantially extends the extended abstract published in [30].

1.2. Related work60

To the best of our knowledge, the concept of BR has been addressed in SSGs

only in the context of single-step games and this work is the first to consider a

BR implementation in sequential SSGs.

For single-step SSGs, one of the main BR implementations is the CO-

BRA [13] method, which modifies DOBSS MILP [31] to address AT with ϵ-65

optimality models. A similar approach was taken by Yang et al. [12] who pro-

posed BR models relying on PT and QR, respectively, and demonstrated their

suitability in SSGs based on experiments with human players. The SHARP sys-

tem [32] considers certain game-related aspects (e.g. past performance and simi-

larity of game conditions) which are taken into account in repeated SSGs played70

against human adversaries. MATCH [33] optimizes the leader’s strategy against

a worst-case outcome within some error bound (i.e. assuming certain deviations

from the follower’s optimal strategy). Another approach – BRQR [34], proposed

by Yang et al., refers to the idea of QR. The method is further improved in the

SU-BRQR system [35], which introduces a subjective utility function for the75

follower with parameters tuned in experiments involving humans. QR was also

used to model bounded rationality for the optimal defense resources allocation

for power systems [36]. All the above-mentioned works are implementations of

BR models in MILP/LP formulations of single-step SSGs.

More recent BR approaches are more practically-oriented and focused on80

real-life SSG applications in particular domains. The work of [37] uses a logistic

regression model for optimizing the signaling strategy in the poaching domain
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against boundedly rational poachers. In [38] a predictive framework for wildlife

protection is proposed that accounts for imperfect crime information and un-

certainty in wildlife data. The work of [39] presents a solution based on PT85

modeling with regret minimization related to past data, with an application in

cybersecurity - in the so-called Cyber Camouflage Games [40]. A reinforcement

learning approach to discovering strategies for poaching prevention that consid-

ers information uncertainty is presented in [41]. Two other papers [42, 43] adopt

a convolutional neural network to learn the adversary’s behavior in network se-90

curity games, which can be applied in smuggling prevention. Both methods rely

on using historical data and machine learning techniques to approximate and

predict the follower’s behavior, whereas in our method no historical data is used

to define or tune the model.

In summary, while the above-mentioned models represent quite a wide range95

of BR approaches, none of them could be applied directly to sequential SSGs.

Furthermore, to the best of our knowledge, this work is the first BR implemen-

tation in sequence-form games.

1.3. Motivation

This paper combines the following two concepts which are generally con-100

sidered separately in the literature: (1) BR models in Security Games and (2)

efficient solution methods for sequential SGs.

In both areas significant progress has been observed in recent years. How-

ever, to our knowledge, the concept of BR has been addressed in Security Games

exclusively in the context of single-step games. An example of this is the re-105

cently emerged, fast-growing field of Green Security Games [44, 7], in which

game-theoretical models exploit the non-rational behavior of the followers (e.g.

poachers or illegal forest extractors) to maximize the effectiveness of protection

activities.

At the same time, several algorithms have been proposed for large-scale se-110

quential SGs. These algorithms utilize different techniques which yield an exact

solution, e.g. sequence-form [23], correlated equilibria [21]. Another class of
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approaches employs heuristics to improve the equilibrium computation time.

Notable contributions in the area include, first of all, a method that folds large

parts of the game tree into small structures called gadgets, calculates an equi-115

librium in the abstracted game using LP, and iteratively unfolds gadgets that

have the highest impact on the equilibrium strategy [22].

A new line of approximate methods based on Monte Carlo Tree Search

(MCTS) combined with UCT sampling [45] of the game tree to iteratively

improve the leader’s strategy has been recently proposed in [46]. Subsequent120

works have been developed along two main directions: (1) the Mixed-UCT

method [47, 27], in which imperfect-information UCT is applied to sample

gradually stronger follower in order to derive an approximation of the optimal

leader’s mixed strategy, and (2) O2UCT [24, 25], which interleaves the update

phases of the sampled leader’s strategy with finding the follower’s best response.125

A distinct group of methods use Evolutionary Algorithms for SSE computa-

tion in different areas of SGs [48, 26, 49]. Yet, another powerful recent approach

applies finite-state machines as a compact representation of the abstracted strat-

egy [50].

Successful research on the crossroads of the two above-described research130

directions may allow for tackling practical, large-scale problems arising in real-

life scenarios.

The majority of methods described in the literature assume that the follower

chooses an optimal response strategy, i.e. behaves in a perfectly rational way.

However, in real-life scenarios in which humans are involved, this assumption135

may not hold, due to the imperfections of the players’ senses, cognitive biases,

partial knowledge about the problem, or imprecisely defined goals. Decision-

making limitations of this type are of paramount importance in practical security

scenarios modeled by Stackelberg Games, in which the role of the follower is

“played” by terrorists, thieves, poachers, or hackers. Defenders often have little140

knowledge about such opponents, their perception, or cognitive abilities. Hence,

in practice, playing the SE strategy by the leader may – in fact – be suboptimal.

Furthermore, human-follower BR biases can potentially be exploited by the
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leader and may increase their payoff in Stackelberg Security Games.

Among several BR models introduced in the literature, the AT approach145

has been chosen since it has been already successfully applied to single-step

SGs [13] and is furthermore intuitively justified in real-life cases when only

limited observation of the leader’s strategy is possible.

There is no scientific consensus on which of the BR models best mimics hu-

man decision making, however, AT is claimed by psychologists to accurately150

reflect human strategies of revenue/expense allocation [51], which is the essence

of SSGs. Furthermore, AT has been successfully applied in real-world systems,

e.g. structured clinical judgment [52] or retirement investing planing [53]. Fi-

nally, our choice of AT as a BR model is supported by promising results of the

application of AT to single-step SGs in experiments involving humans [13].155

Generally speaking, AT [18] assumes the existence of a bias of a person who

observes some events (for instance, surveils the opponent’s strategy in SSG),

where their assessment of the probability distribution is skewed towards a uni-

form distribution. Formally, for any probability distribution over a finite set X,

let us denote the probability of x ∈ X as qx. The observer believes that this160

probability is equal to q′x = qx(1− α) + α/|X|, where 0 < α < 1 is a parameter

of the AT bias and |X| is the cardinality of X.

The underlying claim of this paper is that in SGs, the leader, being aware of

the follower’s AT bias, can effectively exploit this knowledge in their own mixed

strategy formulation.165

1.4. Definitions

Throughout this paper the notation from [21] is used so as to easily refer to

the method proposed therein. Sequential games are represented as Extensive-

Form Games (EFGs), i.e. tuples G = (N ,H,Z,A, ρ, u, I), where N = {l, f}

is a set of players, the leader and the follower, respectively. H is a set of game170

nodes that compose a game tree with the root node representing the initial

game position. Z ⊂ H is a set of leaves representing terminal game states. A

is a family of sets Ah which ∀h ∈ H \ Z define possible actions from each non-
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terminal node h. ρ : H\Z → N is a function that defines the acting player for a

given node. u = {ul, uf}, ui : Z → R, i ∈ N is a family of utility functions that175

for a terminal node map from a player to a game outcome for this respective

player. I is a family of Information Sets (ISs); each I ∈ I defines states that

are indistinguishable to the acting player. I satisfies the following conditions:

• I partitions H \ Z,

• ∀I ∈ I ∀h1, h2 ∈ I ρ(h1) = ρ(h2) – all nodes in a given IS have the180

same acting player,

• ∀I ∈ I ∀h1, h2 ∈ I Ah1
= Ah2

– for a given IS, the set of available

actions is the same in all nodes.

Additionally, A(I) denotes the set of actions available in I and Ii, i ∈ N signifies

a family of ISs with acting player i (I = Il ∪ If ).185

Moreover, the games are assumed to satisfy the perfect recall property, i.e.

throughout the game each player is fully aware of previous ISs visited by him/her

and actions taken by him/her in that ISs.

In EFG, a pure strategy of a player assigns to each IS in which the player

is an acting player a particular action to be played in that IS. A set of all pure190

strategies of player i will be denoted by Πi. A mixed strategy of a player is

a probability distribution over pure strategies of that player. ∆i will be used

to denote a set of mixed strategies of player i. Elements of Πi and ∆i will be

denoted by π and δ with adequate indices (l-leader, f -follower), respectively.

A behavior strategy is an assignment of a probability distribution of actions195

for each IS, that a player can reach during the game. It can be viewed as a tree

with nodes representing player’s ISs and edges representing actions (labeled with

their probabilities). The notions of mixed strategy and behavior strategy will be

used interchangeably as they are equivalent in games with perfect recall.

The notation of u functions will be overloaded, so that ui(πl, πf ) will denote200

the i-th player’s utility after the pure strategy profile (πl, πf ) has been played.

Similarly, ui(δl, δf ) will denote the expected utility of the i-th player for the
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mixed strategy profile (δl, δf ).

Each node in a game tree is uniquely defined by a pair of sequences: the

leader’s actions and the follower’s actions, both of which lead to that node.205

These sequences will be denoted by σl and σf , respectively. A pair of sequences

(σl, σf ) is compatible if it leads to a terminal node in the game tree. Utility

values in terminal nodes for a compatible pair of sequences will be denoted by

ui(σl, σf ), i ∈ N . Following [21], for any pair (σl, σf ) an auxiliary function

gi(σl, σf ) is defined which yields a value of ui(σl, σf ) if the sequences are com-210

patible and 0 otherwise. Finally, σi(h), i ∈ N , h ∈ H will denote a sequence of

actions of the i-th player which led to node h and Ii(σi) is the IS in which the

last action from σi was played.

The goal of SG is to find a Stackelberg Equilibrium (SE), i.e. a strategy

profile (δ∗l , δ
∗
f ) which is a solution of the following set of equations:

δ∗l = argmaxδl∈∆l
ul (δl, OR(δl))

δ∗f = OR(δ∗l )

OR(δl) = argmaxδf∈∆f
uf (δl, δf )

(1)

In the above, OR(δl) denotes the unique optimal follower’s response to the

leader’s strategy δl. It is of importance that OR may not be well-defined when

there is more than one optimal follower’s response δ∗f . For this reason, SE

is often extended to the form of a Strong Stackelberg Equilibirum (SSE) [54],

defined below. Note that OR is a set now:argmaxδl∈∆l,δf∈OR(δl)
ul(δl, δf )

OR(δl) =
{
δf

∣∣∣(∀δ′f )uf (δl, δf ) ≥ uf (δl, δ
′
f )
}
.

(2)

In SSE, in addition to (1), a specific provision is considered. In the case of a tie

among the follower’s best response strategies, the one of them that maximizes215

the leader’s utility is selected (if there are more such strategies any one of them

is chosen). In this paper the SSE version of SE is considered.

An important property of SE (and SSE) in finite games is that there always

exists an equilibrium strategy profile in which the follower’s strategy is in the

9



form of a pure strategy [55]. This observation is a cornerstone of the methods220

used to compute SE (SSE).

1.5. Structure

The rest of the paper is organized as follows. Sections 2 and 3 present

straightforward (ATSG) and approximate (ATSGL) implementations of Anchor-

ing Theory for Stackelberg Games, the latter of which is specifically tailored to225

MLIP methods. The next section presents an experimental setup and evaluation

results of approximate AT implementations for five state-of-the art approaches

to SGs: three based on MILP, which employ a linear ATSGL formulation, and

two relying on metaheuristics. Section 5 describes online experiments involving

humans in the role of the follower against three different methods for the cal-230

culation of the leader’s strategy: fully rational SSE (described in this section),

SSE biased by ATSG (described in Section 2) and SSE biased by ATSGL (de-

scribed in Section 3). These online tests show that humans are indeed affected

by the AT-bias and that considering this bias in the leader’s strategy improves

his/her expected outcomes. The paper is summarized in Section 6. Appendix235

A lists the basic notation and abbreviations used throughout.

2. Anchoring Theory in Sequential Games

As stated above, the implementations of AT in SGs presented in the lit-

erature are limited to single-step games only. There are two straightforward

ways to generalize AT to sequential games. The first one is to transform an240

extensive-form game to its normal-form where each action of a player is equiv-

alent to a pure strategy. Such an approach, however, would introduce a global

distortion of probabilities and is, therefore, inaccurate if the opponent’s behav-

ior is considered separately at each decision point. The other possibility is to

apply the AT distortion locally - i.e. directly to the probability distribution245

for each IS that forms a behavior strategy of the player. This approach seems

to be more intuitive, though, due to non-linear constraints, poses problems for

sequence-form MILP methods.
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In the remainder of this section, two state-of-the-art exact MILP methods for

SSE computation in sequential games are first presented (Sections 2.1 and 2.2).250

Then, in Section 2.3 a further analysis of the above-mentioned problem with

the local AT implementation in MILP methods (ATSG) is performed, followed

by an introduction of the local ATSG approximation (ATSGL). ATSGL allows

for the AT distortion in every node of the behavior strategy similar to ATSG,

albeit avoids non-linear constraints.255

2.1. Sequence-form based MILP

The first method (which will henceforth be referred to as BC2015 ), intro-

duced in [23], uses a sequence-based representation of the extensive-form game.

The method assigns a probability to each possible move sequence of each player

and then calculates utility values using functions gi, i ∈ {l, f} introduced in260

Section 1.4. The following MILP is formulated and solved to obtain the SSE of

the game:

max
p,r,v,s

∑
z∈Z

p(z)ul(z), s.t. (3)

vIf (σf ) = sσf
+

∑
I′∈If |σf (I′)=σf

vI′ +
∑

σl∈Σl

rl(σl)gf (σl, σf ) (4)

ri(∅) = 1 ∀i ∈ N (5)

ri(σi) =
∑

a∈Ai(Ii)

ri(σia) ∀i ∈ N ∀Ii ∈ Ii, σi = σi(Ii) (6)

0 ≤ sσf
≤ (1− rf (σf )) ·M ∀σf ∈ Σf (7)

0 ≤ p(z) ≤ ri(σi(z)) ∀i ∈ N ∀z ∈ Z (8)

1 =
∑
z∈Z

p(z) (9)

rf (σf ) ∈ {0, 1} ∀σf ∈ Σf

0 ≤ rl(σl) ≤ 1 ∀σl ∈ Σl

In the above, the rl and rf families of variables denote the probabilities of

playing a given move sequence by the leader and the follower, respectively. rf
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are binary variables, as there always exists an SSE profile in which the follower265

plays a pure strategy [55]. Equations (5) and (6) tie together the probability

of playing a particular move sequence with the sum of probabilities of playing

that sequence extended by one move. Variables p are defined for terminal nodes

of the game and each of them denotes a probability of reaching the respective

node. Equations (8) and (9) establish a connection between variables p and270

r, so that a probability of reaching a terminal node is equal to the probability

of the move sequence leading to this node. Variables v are used to calculate

the follower’s utility after playing particular move sequences and variables s are

slacks. Equations (4) and (7) ensure that the follower’s strategy defined by rf

is an optimal response to the leader’s strategy.275

Please note that each sequence-form variable rl(a1a2 · · · an) = q(a1)q(a2) · · · q(an)

is a product of probabilities of subsequent actions in the behavior strategy.

2.2. SEFCE-based approach

The other exact approach for calculating SSE in sequential games [21] consid-

ered in this study, referred to as C2016, is an iterative method which alternates

between two phases: solving MILP/LP to find a Stackelberg Extensive-Form

Correlated Equilibrium (SEFCE) in the sequence-form game representation,

and a SEFCE refinement with a dedicated procedure relying on an LP modifi-

cation towards SSE. Since the equilibrium refinement part is not affected by the

implementation of AT, it will not be discussed here. The SEFCE part of the

method, defined by a set of equations (10)-(16), is built around variables that

define the probabilities of particular sequences being played by the players [21].

The following LP definition employs the notion of relevant sequence pairs (rel)

– formally introduced in Definition 3 in [21].

max
p,v

∑
σl∈Σl

∑
σf∈Σf

p(σl, σf )gl(σl, σf ) (10)

s.t. p(∅, ∅) = 1; 0 ≤ p(σl, σf ) ≤ 1 (11)

p(σl(I), σf ) =
∑

a∈A(I)

p(σl(I)a, σf ) ∀I ∈ Il,∀σf ∈ rel(σl(I)) (12)
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p(σl, σf (I)) =
∑

a∈A(I)

p(σl, σf (I)a) ∀I ∈ If ,∀σl ∈ rel(σf (I)) (13)

v(σf ) =
∑

σl∈rel(σf )

p(σl, σf )gf (σl, σf ) +
∑

I∈I|σf (I)=σf

∑
a∈Af (I)

v(σfa) (14)

v(I, σf ) ≥
∑

σl∈rel(σf )

p(σl, σf )gf (σl, σf (I)a) +
∑

I′∈If |σf (I′)=σf (I)a

v(I ′, σf ),

∀I ∈ If ,∀σf ∈
⋃
h∈I

rel(σl(h)),∀a ∈ A(I) (15)

v(σf (I)a) =v(I, σf (I)a)∀I ∈ If ,∀a ∈ A(I) (16)

The main variables in the above LP are p(σl, σf ) which describe the correlation

plan and represent a probability that the correlation device will give a suggestion280

of the respective sequences of moves (σl, σf ) being played by the players. Implic-

itly, they define the players’ strategies. Objective (10) maximizes the leader’s

utility. Constraints (11) – (13) are conceptually similar to constraints (5) –

(6) and they ensure that the correlation plan is correct, i.e. the probability of

playing a given sequence is the sum of the probabilities of playing the sequences285

that extend this given sequence by one action. v are auxiliary variables which

guarantee that the suggested σf is the optimal follower’s response.

The crucial constraints (from the AT perspective) are (14) and (15), which

assure that the selected follower’s strategy yields utility not worse than any

other strategy. An implementation of AT requires changing the perception of290

p(σl, σf ) variables, so as to include the anchoring bias - the details are presented

in the following section.

The scheme to solve the above LP alternates iteratively with the mentioned

refinement procedure, which can be summarized as follows. First, all p variables

whose values are not binary, i.e. the probabilities of playing the respective295

actions are between 0 and 1, are identified for the current LP solution. Next,

the LP is extended with constraints that force those values to be 0 or 1, which

leads to various possible refinements of the LP. The refined LPs are solved and

among the feasible ones, the one that yields the highest leader’s utility is chosen.

No modifications to this procedure, compared to its original formulation [21],300
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are required in our method. Similarly to BC2015, variables p used in (10)–(16)

are products of probabilities q from the respective behavior strategy.

2.3. Anchoring Theory modification

ATSG is implemented as a distorted follower’s perception of the leader’s

behavior strategy. Let’s denote by q(i) the probability of action i being cho-

sen by the leader in a given IS, stemming from the behavior strategy. The

most straightforward implementation of AT (though, non-linear in sequence-

form games) is to change the probability of taking this action to q′(i) = (1 −

αq(i)) + α/M , where M is the number of actions available in this IS. How-

ever, in sequence-form games, for a given sequence of leader’s actions σl =

a1, a2, a3, . . . , an, a probability of playing it, based on the behavior strategy,

would be p(σl) = q(a1)q(a2) · · · q(an) and the distorted AT probability would

become:

p′(σl) = ((1− α)q(a1) + α/M1)((1− α)q(a2) + α/M2) · · ·

((1− α)q(an) + α/Mn), (17)

where Mi is the number of actions available for the IS in which ai is played.

Let us observe again that variables r in the MILP formulation (3)–(9) are305

products of q(ai) values presented in (17) and as such cannot be expressed in

linear form with respect to q(ai). A similar remark applies to LP (10)–(16)

where variables p are also products of probabilities in the behavior strategy.

Consequently, a straightforward application of the above AT modification to

those programs would end-up with non-linear constraints, unsuitable for the310

MILP/LP formulation.

Consequently, this paper proposes to simplify the above ATSG formula-

tion (17) by dropping the distortion coefficients from all probabilities except

the last one:

p′′(σl) = q(a1)q(a2) · · · q(an−1)((1− α)qan
+ α/Mn)

= q(a1)q(a2) · · · q(an−1)·α/Mn + (1−α)q(a1)q(a2)· · ·q(an−1)q(an)

= p(init(σl))α/Mn + (1− α)p(σl), (18)
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Figure 1: An illustrative example of the difference between the exact (upper tree) and sim-
plified (lower tree) Anchoring Theory formulations.

where init(·) is a function which outputs a sequence of moves without the

last one. ATSGL (18) is a simplified version of ATSG (17), well suited to

MILP/LP formulations of sequence-form games. The difference between ATSG

and ATSGL is visualized in Figure 1.315

The relations among the probabilities of the leader’s actions within a single

IS are the same for both eqs. (17) and (18), i.e. ∀σ1
l , σ

2
l I(σ1

l ) = I(σ2
l ) ⇒

p′(σ1
l )/p

′(σ2
l ) = p′′(σ1

l )/p
′′
( σ

2
l ), where p′(σ), p′′(σ) represent the probabilities of

a sequence σ in a given IS calculated according to (17) and (18), respectively.

Furthermore, for a given sequence σl, for small values of α the difference |p′′(σl)−320

p′(σl)| is also small.

The resulting p′′ values do not represent a proper probability distribution

since they do not sum up to one. Normalization is not needed though, as

they are used only to make comparisons between the distorted utility of various

follower strategies in the above-mentioned MILP/LP programs. The results of325
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such comparisons are independent of p′′ normalization.

2.4. Modification of MILP/LP based methods

The ATSGL formulation (18) was implemented for both state-of-the-art ex-

act methods for sequential SGs: BC2015 and C2016. The changes imposed

by the incorporation of ATSGL are presented in eqs. (19)–(21). The parts330

of the equations which are removed from the baseline MILP formulations are

crossed out and replaced with the respective parts emphasized in bold. The

new formulation arises directly from eq. (18).

2.4.1. Sequence-form method

BC2015 directly utilizes the sequence-form game representation and, un-

like C2016, is not an iterative method, i.e. it relies on solving a single MILP

instance with a larger number of variables to obtain the game solution. The

implementation of ATSGL (according to eq. (18)) requires replacing part of

equation (4) with a variant that uses the ATSGL distortion in the calculation

of the follower’s utility:

vIf (σf ) = sσf
+

∑
I′∈If |σf (I′)=σf

vI′ +

����������XXXXXXXXXX

∑
σl∈Σl

rl(σl)gf (σl, σf )+

+
∑

σl∈Σl

rl(σl)gf(σl, σf)+α/MI(σl)gf(σl, σf)rl(init(σl)) (19)

The remaining part of MILP does not change.335

2.4.2. SEFCE method

In C2016, ATSGL is implemented according to eq. (18) through the mod-

ification of constraints (14) and (15), which are replaced with constraints (20)
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and (21) presented below:

v(σf ) =

�������������XXXXXXXXXXXXX

∑
σl∈rel(σf )

p(σl, σf )gf (σl, σf )

∑
σl∈rel(σf )

gf(σl, σf) (p(σl, σf) + α/MI · p(init(σl), σf))+

+
∑

I∈I|σf (I)=σf

∑
a∈Af (I)

v(σfa), ∀σf ∈ Σf (20)

v(I, σf ) ≥
((((((((((((((hhhhhhhhhhhhhh

∑
σl∈rel(σf )

p(σl, σf )gf (σl, σf (I)a)

∑
σl∈rel(σf )

gf(σl, σf(I)a) (p(σl, σf) + α/MI · p(init(σl), σf))+

+
∑

I′∈If |σf (I′)=σf (I)a

v(I ′, σf ), ∀I ∈ If ,∀σf ∈
⋃
h∈I

rel(σl(h)),∀a ∈ A(I)

(21)

The LP in C2016 does not encompass the variables describing the proba-

bilities of playing σl alone (pσl
), but instead refers to a correlation plan which

provides suggestions on playing pairs (σf , σl). Moreover, p(σl, σf ) equals p(σl)

only if marginal probabilities satisfy

p(σf ) ∈ {0, 1}, (22)

i.e. the correlation plan suggests the follower to play a pure strategy. In the

above ATSGL version of C2016, defined by equations (20)–(21), the condition

(22) may not initially hold for all σf , but must be fulfilled for all of them at

the completion of C2016, since (22) constitutes a stopping condition for this340

method.

2.4.3. Game abstraction method

In 2018 a new approach to extensive-form SSGs that folds game subtrees

into nodes called gadgets and then incrementally unfolds them to refine the

solution was proposed [22]. The method (henceforth referred to as CBK2018 )345

internally employs C2016 to solve the abstracted (smaller) games. CBK2018

was formulated by its authors in two variants: as an exact method and as a
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heuristic time-optimized approach, with an experimental evaluation provided

only for the latter variant [22]. Consequently, this study also focuses on the

heuristic formulation of CBK2018 and following a recommendation from [22]350

sets the internal method’s parameters to ϵ = 0.3, σ = 0.4 which assures fast

convergence, albeit at the cost of some deviation from the optimal results. In

the ATSGL modification of CBK2018 original C2016 constraints (14)–(15) are

replaced with their ATSGL versions (20)–(21).

3. Heuristic Approximations of ATSG355

The above-discussed three ATSGL modifications of MILP/LP methods are

compared with two heuristic non-MILP approaches to solving sequential extensive-

form SSGs (O2UCT and EASG, summarized in Sections 3.1 and 3.2, respec-

tively) with adequate ATSG adjustments (Sections 3.1.1 and 3.2.1, resp.). Con-

trary to the MILP/LP methods, the heuristic approaches are capable of dealing360

with both the non-linear ATSG formulation and its linearized ATSGL version.

3.1. A summary of O2UCT method

The first approach (referred to as O2UCT — double-oracle UCT sam-

pling) [24, 25] relies on the guided sampling of the follower’s strategy space inter-

leaved with finding a feasible leader’s strategy using the double-oracle method.365

In the first step, the follower’s pure strategy (πr
f ) is obtained using the Upper

Confidence bounds applied to Trees (UCT) algorithm [45] - a variant of guided

Monte Carlo sampling. Then, for the sampled follower’s strategy, a process of

building the leader’s strategy (δl) is performed. δl must satisfy the following

conditions: (1) πr
f is the optimal response strategy against δl; (2) δl provides370

the highest possible leader’s utility against the best follower’s response. An

algorithm for finding the requested leader’s strategy δl is presented in detail

in [25] and outlined in Figure 2.

In the first step in Figure 2, the optimal follower’s response (πb
f ) is calculated

(†) against δl. Then, the algorithm checks if πb
f = πr

f . If so, then a procedure375

for adjusting δl to obtain better utility against πb
f (compared with πr

f ) is applied
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Initialize leader’s
mixed strategy
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strategy
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Adjust leader’s strate-
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Improve leader’s payoff
against πr

F (†)

No

Return best feasible
leader’s strategy

Yes

Store best leader’s strategy

πr
F

leader’s payoff

Figure 2: O2UCT : An overview of the method of finding the leader’s mixed strategy corre-
sponding to the requested follower’s strategy. Procedures marked in red adjust the current
leader’s strategy.

(‡). Otherwise, when πr
f ̸= πb

f , an adjustment to δl is made so as to increase

the leader’s utility against πr
f .

In O2UCT the two above-mentioned phases: the sampling of the follower’s

strategy πr
f (against the current leader’s strategy δl) and the adjustment of δl380

are iteratively alternated until the stopping conditions are met. Consult [24, 25]

for a detailed description of the method.

3.1.1. ATSG implementation

The implementation of ATSG in O2UCT requires two changes. First of all,

in the follower’s best response oracle (†), which exhaustively searches through all385

possible pure strategies in O2UCT, the procedure that calculates the follower’s

utility is modified so as to use distorted probabilities (17) when calculating

the expected value. Similarly, in the procedure that calculates the difference

between the follower’s utility for two strategies (‡), the way the expected utility

is calculated is adapted so as to use a distorted strategy (perceived by the390

follower in ATSG).
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In the case of O2UCT, contrary to the MILP/LP ATSG implementations,

the potential existence of non-linearities in the formulas defining the distorted

follower’s probabilities is not harmful, and – in principle – any other BR modi-

fication could be used instead of eq. (17).395

3.2. A summary of EASG method

The other heuristic method applicable to sequential SGs considered in this

paper utilizes Evolutionary Algorithms (EA) to find the leader’s mixed strat-

egy [26] and, to our knowledge, is the first generic evolutionary approach pro-

posed in this domain. The authors are not aware of any other EA-based applica-400

tions to sequential SGs except for our previous approach [48], which, however, is

tailored to a specific game scenario in which targets are moving along predefined

trajectories.

Algorithm 1: Pseudocode of EASG.

P - population
P ← randomly selected leader’s pure strategies
while (generations limit not reached) do

E ← ne chromosomes with highest fitness function values
Pc ⊆ P /* random population subset for crossover */

/* crossover merges pairs of chromosomes */

P = P ∪ Crossover(Pc)
Pm ⊆ P /* random population subset for mutation */

/* mutation changes actions in a randomly selected element of a

chromosome */

P = (P \ Pm) ∪Mutation(Pm)
Evaluate(P) /* calculate fitness function value - leader’s

payoff against optimal follower’s response to a strategy

encoded in a chromosome */

P = E ∪ Selection(P) /* choose strategies for next generation

based on fitness evaluation */

end
return best leader’s strategy

EASG follows a standard evolutionary algorithm scheme as presented in

Algorithm 1. A population of individuals evolves for a fixed number of gener-405

ations. In each generation crossover and mutation operators are applied with

certain probabilities and the population for the next generation is created by a

selection procedure, based on the fitness value computed for each individual.
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Population. Each chromosome CHq, q = 1, . . . , population size represents

some leader’s mixed strategy in the form of a vector of pure strategies πq
i with

their probabilities pqi :

CHq = {(πq
1, p

q
1), . . . , (π

q
lq
, pqlq )},

lq∑
i=1

pqi = 1, (23)

where lq is the length of CHq. A strategy πq
i is a list of the leader’s actions

in consecutive rounds. Each chromosome in the initial population includes one410

randomly selected pure strategy with a probability equal to 1.

Crossover. A crossover operator combines two randomly chosen chromo-

somes by aggregating all pure strategies they contain and halving their proba-

bilities (if a given strategy belongs to both chromosomes, the resulting proba-

bilities are summed up). Crossover is applied to a chosen pair of chromosomes415

with a specified probability.

Mutation. In the mutation operation a pair (pure strategy, round number)

is uniformly selected in a chromosome. Then, starting from the selected round

until the last one, a leader’s action is uniformly chosen in each round (among

all actions available in this round) to replace the existing action. The mutation420

affects each individual with a specified probability.

The role of the mutation operation is to boost the exploration of the leader’s

strategy space while crossover combines existing solutions and has a more ex-

ploitative nature.

Selection. Selection is a two-step procedure. First, ne individuals with the425

highest fitness values (called the elite) from the union of the current population

and the set of offspring chromosomes are directly (unconditionally) promoted

to the next generation population. Next, a binary tournament with a spec-

ified selection pressure P is iteratively executed until the next generation is

filled with population size individuals, i.e. in each tournament among two ran-430

domly chosen chromosomes the higher-rated one (in terms of the fitness value)

is promoted with probability P and the lower-rated one with probability 1−P .

Chromosomes for the tournaments are sampled from the union of the current
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population and the offspring.

Evaluation. The fitness function is defined as the leader’s utility obtained435

when playing a strategy encoded by a chromosome. This utility is calculated by

computing game payoffs against all possible follower’s strategies and choosing

the one that yields the highest value for the follower while breaking ties in favor

of the leader (the SSE condition).

3.2.1. ATSG implementation440

Similarly to O2UCT, an important advantage of the EASG formulation is

its flexibility, understood as the ease of adaptation to various SG formulations.

In the context of BR, various types of perturbations to the optimal follower’s

response can be implemented in EASG by adjusting the chromosome evaluation

procedure.445

The incorporation of ATSG into EASG relies on considering a distorted ver-

sion of the leader’s mixed strategy when calculating the best follower’s response.

This distorted leader’s strategy is obtained in the three following steps.

1. First, in order to directly apply eq. (17), a strategy encoded by a chro-

mosome is transformed into a tree with nodes and edges representing450

game states and moves (actions) between states, respectively. Formally,

if σl = a1, a2, . . . , al is a list of consecutive actions in the first l rounds

and Ppref (σl) is a sum of probabilities of all pure strategies in the chro-

mosome that begin with the actions σl, then the probability of an edge

(move) in a game tree between nodes corresponding to σl−1 = init(σ) and455

σl is computed as
Ppref (σl)

Ppref (σl−1)
.

2. Next, all probabilities in the above game tree are modified in line with

eq. (17).

3. Finally, the tree (with modified probabilities) is transformed back to a list

of pure strategies with assigned probabilities through a reversed proce-460

dure, i.e. each unique path from the root to a leaf node corresponds to a

pure strategy encoded by the list of the respective actions (nodes) with a

probability equal to the product of probabilities on all edges on this path.
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A set of all such pairs (encoded pure strategy and its probability) form

a new chromosome (see eq. (23)), which represents the ATSG-distorted465

leader’s strategy.

An example of how the leader’s strategy encoded in a chromosome is transformed

into its distorted version is presented in Figure 3.

Figure 3: An example of how the ATSG-distorted leader’s strategy is computed in the modified
EASG method.

Once the ATSG leader’s strategy is defined, the optimal follower’s response

strategy is computed by enumerating over all possible follower’s pure strategies470

and choosing the one with the highest follower’s payoff.

Next, this follower’s response strategy is used to calculate the utility of the

players, but this time using the original, unmodified strategy extracted from a

chromosome (without the distortion of probabilities). In other words, a distorted

strategy is used only in the calculation of the follower’s utility. The leader475

is assumed to be perfectly rational and therefore his/her utility (chromosome

fitness value) is calculated with no distortion.

Similarly to O2UCT, any other BR model could be used instead of eq. (17).
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4. Experimental evaluation

Proposed ATSG/ATSGL modifications are evaluated from two perspectives:480

• time – computation times of the same methods with and without AT an

implementation are compared to see the influence of AT on computational

efficiency,

• payoffs – several approximations of the basic ATSG formulation are

considered: ATSGL implemented in BC2015 and C2016 (exact MILP485

methods), ATSGL implemented in CBK-2018 (heuristic MILP method),

and ATSG implemented in EASG and O2UCT (non-MILP metaheuris-

tic methods). For each method, the performance of the obtained leader’s

strategy was tested against an ATSG follower (i.e. a follower with an AT

perception distortion) and against a fully rational follower (with no AT490

distortion).

The ATSG versions of the five considered methods will be referred to with

the prefix AT-:

• AT-BC2015, AT-C2016, AT-CBK2018 – ATSGL implementations of the

respective MILP methods,495

• AT-O2UCT and AT-EASG – ATSG implementations of the respective

metaheuristic methods.

4.1. Benchmark games

An experimental evaluation is performed on three sets of benchmark games:

WHG [27], WNZ [25] and SEG [23]. All WHG and WNZ instances can be500

downloaded from our project website [28].

Each WHG/WNZ game refers to a scenario of patrolling a warehouse or

an office building. The game area is modeled in the form of a graph with

some vertices containing valuable resources (referred to as targets). Each player

(leader, follower) possesses a single unit, located in one of the vertices (ware-505

house spaces). In each round, each unit can either stay in the currently occupied
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(a) An example of a warehouse layout: the
narrow black path denotes the main corridor,
squares are storage spaces. Room numbers cor-
respond to the vertex labels in the resulting
game graph presented in the right figure.
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(b) The corresponding game graph. Rectangu-
lar vertices are targets, the triangle vertex is the
follower’s starting point, the blue shaded circle
vertex is the leader’s starting point.

Figure 4: An example game from the Warehouse Games benchmark. Values in the right figure
denote the payoffs for the follower and the leader, respectively, in the case of an interception
of the follower in a given vertex. Additional utility values, relevant in the case of a successful
attack, are assigned to targets (right column). All games are defined on a 4× 4 grid.

vertex or move to an adjacent vertex (change the room). If the units meet in a

common vertex, an interception occurs and the leader receives a reward while

the follower receives a penalty. If the follower reaches any of the target vertices

(rooms) without being intercepted by the leader, he/she is rewarded and the510

leader is penalized. In either of the above cases, the game ends. Otherwise,

the game is played for a fixed number of rounds T . Once the round limit T is

reached, both players are assigned a neutral utility of 0.

The WHG benchmark set consists of 25 game layouts generated on a 4× 4

grid, with general-sum utility. An example game layout created by the ware-515

house generator is presented in Figure 4a (this is an auxiliary game represen-

tation). The corresponding game graph (the actual game representation) is

depicted in Figure 4b. A detailed description of the game generator settings is

presented in [27]. In this paper, each of the 25 WHG games is considered with

T = 3, . . . , 7, albeit for T = 7 exact methods were unable to compute solutions520

within the allotted time and memory. This leads to 125 test games, in total.

The WNZ instances admit exactly the same graph structure as the WHG
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Table 1: Payoff ranges of the Warehouse Games generator for WHG and WNZ game instances.
Actual values for the games were uniformly drawn from the interval [xmin, xmax].

Parameter WHG WNZ
xmin xmax xmin xmax

follower’s penalty for being caught in a
target

−0.1 −0.1 −1 0.2

leader’s reward for catching the follower
in a target

0.03 0.03 0.2 0.2

follower’s penalty for being caught in a
vertex other than a target

−0.03 −0.03 −1 0

leader’s reward for catching the follower
in a vertex other than a target

0.06 0.06 0.1 0.1

follower’s reward in the case of a suc-
cessful attack

0.03 0.67 −0.2 1

leader’s penalty in the case of a success-
ful attack

−0.67 −0.03 −1 0.2

ones, differing in the payoff structure, which is more diverse in WNZ. In effect,

WNZ games are less correlated and “further away” from zero-sum ones than

their WHG counterparts. The average Pearson’s correlation coefficient (PCC)525

between the leader’s and the follower’s rewards in WHG and WNZ instances

is equal to −0.82 and −0.57, respectively. For comparison, for zero-sum games

PCC = −1.00. In total, 125 test games are considered – 25 for each value of

T = 3, . . . , 7. The payoff ranges used in both settings of the game generator are

presented in Table 1.530

SEG instances are played on directed graphs and according to different rules.

Game instances are defined on three variants of a graph proposed in [29] and

presented in Figure 5. The graph variants differ in their connection topologies.

The game graphs are directed and there is no possibility to retreat from some

vertices.535

The leader has 2 units and the mobility of each of them is restricted to one

of the node subsets denoted by oval shapes in the figure. The follower has a

single unit at his/her disposal. In each round, each unit can move to one of the

adjacent vertices. Additionally, the follower can choose to stay in the currently

occupied vertex.540
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Figure 5: Game layouts of SEG instances.

Furthermore, when moving, the follower leaves traces which are visible to the

leader when he/she enters a vertex in which a follower was previously present.

The trace in a given node disappears (is erased by the follower) if the follower

chooses to stay in this vertex for another round (time step).

The follower starts the game in the leftmost red triangle vertex of the graph545

and receives a reward on reaching one of the rightmost vertices. If the leader and

the follower meet in a common vertex they both receive a payoff of 1 (leader)

and −1 (follower). If the follower does not reach any of the destination nodes,

the payoff for both of them equals 0. The follower’s rewards in the destina-

tion (rightmost) nodes are drawn uniformly from the range [1, 2]. The leader’s550

penalty in case the follower reaches a target equals −1. For each game graph two

game variants are considered – in the first one the follower is able to erase traces

and in the other one staying in a vertex (and erasing traces) is not allowed. For

each game setting (one of the three graphs presented in Figure 5 and one of the

two above-mentioned variants) 5 game instances with various follower’s rewards555

were generated leading to 30 test games. Each of these games is played with a

time limit of T = 4, 5, 6 steps. For smaller values of T it is impossible for the

follower to reach the destination whereas larger games are too complex to be

solved by MILP methods as discussed in Section 4.2.

4.2. Experimental setup560

The performance of both heuristic methods was analyzed along two dimen-

sions: the quality of the results (the expected leader’s payoff) and time efficiency.

Results for all games were grouped based on the order of magnitude of the num-

ber of game nodes in the extensive form of the game. Formally, the grouping
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follows the formula (24):

bucket = 10round(log10 |H|), (24)

where round rounds a number to the nearest integer. Such a grouping combines

two aspects of game complexity: one stemming from the underlying game graph

structure and the other one resulting from the game length. For the remainder

of this paper Bi, i = 2, . . . , 7 will denote the i-th bucket of games, i.e. the one

which contains all games for which round(log10 |H|) = i. In order to streamline565

the notation, B≥i, i = 2, . . . , 7 will denote the union of buckets Bi, Bi+1, . . . , B7

and B≤i, i = 2, . . . , 7, the union of buckets B2, B3, . . . Bi.

Tests were run on an Intel Xeon Silver 4116 @ 2.10GHz with 256GB RAM.

Experiments with O2UCT and EASG were run in parallel, each with 8GB RAM

assigned. Tests with BC2015, C2016, CBK2018 were executed sequentially with570

all 256GB RAM available in each trial. Each run was limited to 200 hours and

was forcibly terminated if not completed within the allotted time. The same

settings were applied to the respective AT-modified versions.

Table 2 shows the number of calculated game instances for each of the meth-

ods in both fully-rational and AT settings. O2UCT and EASG were able to575

complete every game instance. For each game instance (AT-)O2UCT and (AT-

)EASG were run 10 times and for each other method (deterministic MILP) a

single trial was performed.

The AT-BC2015 method is parameterless (this also holds for BC2015 [23]).

In AT-C2016, the SI-LP variant of C2016 [21] is considered. For AT-CBK2018,580

the fast-converging variant of CBK2018 [22] (with ϵ = 0.3 and σ = 0.4) is

implemented.

The parameters for metaheuristic methods are selected based on a limited

number of preliminary simulations. AT-O2UCT is parameterized by the fol-

lowing 3 stopping conditions (cf. Figure 2): either the maximum number of585

executions of the positive pass (step † in the figure) exceeds 5, 000, or the im-

provement of the leader’s payoff in 500 subsequent iterations is less than 10−5, or

the number of subsequent executions of the feasibility pass (step ‡ in the figure)
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Table 2: Number of instances solved within time limit.

WHG WNZ SEG
B3 B4 B5 B6 B7 B3 B4 B5 B6 B7 B5 B6 B7

AT-O2UCT 26 25 24 25 23 25 23 21 24 22 30 30 30
AT-EASG 26 25 24 25 23 25 23 21 24 22 30 30 30
AT-BC2015 26 25 24 25 11 25 23 21 24 6 30 30 0
AT-C2016 26 25 24 25 0 25 23 20 22 0 30 30 0
AT-CBK2018 26 25 24 25 15 25 23 21 23 5 30 30 0

O2UCT 26 25 24 25 23 25 23 21 24 22 30 30 30
EASG 26 25 24 25 23 25 23 21 24 22 30 30 30
BC2015 26 25 24 25 3 25 23 21 24 7 30 30 0
C2016 26 25 24 25 2 25 23 20 18 0 30 30 0
CBK2018 26 25 24 25 21 25 23 21 23 18 30 30 0

without the execution of the positive pass (step †) exceeds 10, 000 (infeasible

strategy).590

In AT-EASG the following values for the steering parameters are selected:

population size - 30, mutation probability - 0.5, crossover probability - 0.8,

selection pressure P = 0.9, the number of elitist chromosomes - ne = 2. The

algorithm is run either for 1, 000 generations or until no improvement of the

leader’s strategy is observed in 20 subsequent generations (whichever occurs595

first).

In ATSG/ATSGL formulations (17), (18), α = 0.5 was applied.

4.3. Payoffs

In order to evaluate the efficacy of the proposed AT implementation in SSGs

(ATSG/ATSGL), the leader’s payoffs obtained while playing the calculated600

strategy against an AT-biased follower are compared for the 5 tested meth-

ods. The average expected leader’s utility obtained by each method for WHG,

WNZ and SEG are presented in Figures 6a, 6b and 6c, respectively.

As reported in Table 2, some methods were not able to calculate solutions

for larger game instances. Consequently, if for a given bucket fewer than 75%605

of the games were calculated by a given method, the respective data point was

omitted from the plot. Otherwise, each data point presents a mean result across

all game instances calculated by a given method.
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Since both AT-C2016 and AT-BC2015 are exact methods, their results are

the same and are presented as ATSGL in the plot. Additionally, the results610

of playing the Stackelberg Equilibrium leader’s strategy (the variant with a

perfectly-rational opponent) are presented as a baseline (no-AT). AT-EASG

and AT-O2UCT are metaheuristic methods that implement a non-simplified

ATSG model of the follower’s behavior (17) and AT-BC2015, AT-C2016, AT-

CBK2018 rely on the ATSGL model (18).615

AT-CBK2018 performs poorly in all game genres, though it should be

pointed out that this method yields weak results for these games also in perfect

rationality settings [25]. The second worst result in all three figures is that of

no-AT, which is not surprising since no-AT does not consider the assumed oppo-

nent’s AT bias in any way. AT-O2UCT is the best among all methods, followed620

by AT-EASG. The MILP solutions (AT-BC2015, AT-C2016 ) that use the sim-

plified follower’s model (ATSGL) provide lower payoffs, though still higher than

the no-AT baseline.

Particular differences between methods depend on the game set. In the case

of more demanding game genres: WNZ and SEG, the relative gap (compared625

with the baseline) between ATSGL and AT-O2UCT or AT-EASG is bigger than

in the case of relatively simpler WHG instances.

In all three game sets the gap between AT-O2UCT and AT-EASG grows for

larger games, though at the cost of increased computation time for AT-O2UCT,

as discussed in the next section.630

4.4. Time scalability

The time analysis of the compared methods needs to be done with care

since the time required to compute a strategy depends on both the method

itself (which is irrelevant to the AT modifications) and the changes introduced

by the follower’s AT bias implementation. For this reason, the running times635

of the original methods (with a fully-rational follower) on the three benchmark

sets are presented first, so as to establish the model-specific baselines. Next, the

results for the AT-modified methods are presented and discussed with respect
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Figure 6: The average expected leader’s utility obtained by each of the tested methods.
Since both AT-C2016 and AT-BC2015 are exact methods, their results are the same and are
presented as ATSGL in the plot. no-AT results refer to the case of playing the Stackelberg
Equilibrium leader’s strategy (the variant with a perfectly-rational opponent) - a baseline
result.
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to the baseline. As stated earlier, all experiments were executed with a time

limit of 200 hours, after which each trial was forcibly terminated. The dashed640

line in the plots denotes the time limit. For every trial that exceeds the time

limit, a threshold value of 200 hours is used as the computation time estimate,

which makes the average computation times for such cases smaller than the

actual values (without time limits imposed).

Figures 7a, 7c and 7e present the average running times of unmodified meth-645

ods for the respective benchmark sets.

EASG is the fastest method except for some small games. O2UCT is the

slowest when applied to small games but starts to outperform BC2105, C2016

and CBK2018 for larger instances. MILP-based methods suffer from hitting

the time limit for some games in B6 and the vast majority of B7 instances for650

WNZ, for all games in B7 for SEG, and for about half of B7 WHG instances.

Moreover, initial trials (not presented) have shown that for larger games (B7

and beyond) MILP methods require more than 256GB of RAM while EASG

and O2UCT still work fine with an 8GB memory limit.

The exact differences between the methods depend on the characteristics of655

the particular game set. For WNZ, which has a more complicated payoff struc-

ture, O2UCT starts to outperform the other methods earlier, while for WHG,

where the payoff structure is closer to zero-sum, MILP methods are still reason-

ably fast for B6. In the case of SEG, which uses fixed game graph, and therefore

less diverse extensive-form game trees, only two data buckets for MILP-based660

methods could be gathered, which made a more detailed comparison impossible.

The general conclusion is that MILP approaches are usable only with smaller

games, while metaheuristic methods perform better on larger instances. This

comes at the cost of the metaheuristic methods not guaranteeing convergence

to the optimal solution.665

Figures 7b and 7d and 7f present computation times for AT-modified meth-

ods for the respective game sets. The times presented in the plots follow

the trends identified for the baseline. Generally, AT-EASG is still the fastest

method, although for smaller games from WHG, it is outperformed by BC2015
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Figure 7: On the left: average computation times for original methods without an AT im-
plementation - a baseline. On the right: average computation times for the ATSG/ATSGL-
modified methods.
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and CBK2018. O2UCT again is the slowest approach for small games but scales670

better with respect to the game’s size. The difference that stands out the most

is that AT-C2016 is significantly slower than C2016. AT-CBK2018, which in-

ternally uses AT-C2016, gives mixed results. For SEG it is slower than the

unmodified variant. For other games the times are very similar.

The differences between the remaining methods are not clearly visible in675

the general plot. Therefore, for each method, a comparison of the computation

times before and after the introduction of the AT modification is provided. This

way insights about the impact of the AT implementation on computation times

of the respective methods can be gleaned. Figure 8 presents a comparison

of computation times for the not-modified and AT-modified versions of the680

respective methods, for the analyzed game sets. In the case of O2UCT, for

simpler games (the WHG set, which has a simpler payoff structure and smaller

games than the other sets), the AT-modified version is slightly faster, but for

more complicated games it scales worse and results in longer computation times.

No significant differences in running time can be observed for EASG. BC2015685

in Figures 8g and 8i is slightly faster in the ATSGL version. For C2016, the AT

implementation has the largest impact among all tested methods. The ATSGL

implementation causes a major slowdown, making the method more than 10

times slower than the original one. CBK2108, which internally uses C2016, is

slower for SEG (Figure 8o).690

In summary, it seems reasonable to conclude that beyond a certain level

of game complexity exact methods become infeasible and in such cases both

metaheuristic approaches present a viable alternative. On the other hand, it

should not be forgotten that the main advantage of AT-C2016 and AT-BC2015

is their convergence to the optimal solution for the ATSGL game formulation.695

Based on a direct comparison, it can be concluded that for the set of most

complex games AT-EASG and AT-O2UCT are clearly faster than the state-of-

the-art heuristic MILP methods for solving extensive-form games. Furthermore,

thanks to their capability to handle non-simplified AT formulations, they pro-

vide much better leader’s payoffs. Among the two metaheuristic approaches,700

34



1e+02

1e+03

1e+04

1e+05

B3 B4 B5 B6 B7

Game nodes

T
im

e 
[s

]

type

ATSG

no−AT

(a) WHG: O2UCT vs AT-
O2UCT

1e+02

1e+03

1e+04

1e+05

B3 B4 B5 B6 B7

Game nodes

T
im

e 
[s

]

type

ATSG

no−AT

(b) WNZ: O2UCT vs AT-
O2UCT

3e+03

1e+04

3e+04

1e+05

B5 B6 B7

Game nodes

T
im

e 
[s

]

type

ATSG

no−AT

(c) SEG: O2UCT vs AT-
O2UCT

1e−01

1e+00

1e+01

1e+02

1e+03

B3 B4 B5 B6 B7

Game nodes

T
im

e 
[s

]

type

ATSG

no−AT

(d) WHG: EASG vs AT-
EASG

1

100

10000

B3 B4 B5 B6 B7

Game nodes

T
im

e 
[s

]

type

ATSG

no−AT

(e) WNZ: EASG vs AT-
EASG

3000

5000

7000

B5 B6 B7

Game nodes

T
im

e 
[s

]

type

ATSG

no−AT

(f) SEG: EASG vs AT-EASG

1

100

10000

B3 B4 B5 B6
Game nodes

T
im

e 
[s

]

type

ATSGL

no−AT

(g) WHG: BC2015 vs AT-
BC2015

1

100

10000

B3 B4 B5 B6
Game nodes

T
im

e 
[s

]

type

ATSGL

no−AT

(h) WNZ: BC2015 vs AT-
BC2015

1e+01

1e+02

1e+03

1e+04

1e+05

B5 B6
Game nodes

T
im

e 
[s

]
type

ATSGL

no−AT

(i) SEG: BC2015 vs AT-
BC2015

1

100

10000

B3 B4 B5 B6
Game nodes

T
im

e 
[s

]

type

ATSGL

no−AT

(j) WHG: C2016 vs AT-
C2016

1

100

10000

B3 B4 B5 B6
Game nodes

T
im

e 
[s

]

type

ATSGL

no−AT

(k) WNZ: C2016 vs AT-
C2016

10

100

1000

10000

B5 B6
Game nodes

T
im

e 
[s

]

type

ATSGL

no−AT

(l) SEG: C2016 vs AT-C2016

1e−01

1e+00

1e+01

1e+02

1e+03

B3 B4 B5 B6
Game nodes

T
im

e 
[s

]

type

ATSGL

no−AT

(m) WHG: CBK2018 vs AT-
CBK2018

1

100

10000

B3 B4 B5 B6
Game nodes

T
im

e 
[s

]

type

ATSGL

no−AT

(n) WNZ: CBK2018 vs AT-
CBK2018

300

1000

3000

10000

B5 B6
Game nodes

T
im

e 
[s

]

type

ATSGL

no−AT

(o) SEG: CBK2018 vs AT-
CBK2018

Figure 8: Comparison of computation times of the original method and its ATSG/ATSGL
version for each game set.
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AT-O2UCT generally yields better payoffs for more complex games than AT-

EASG, albeit at the cost of inferior time scalability.

5. Experiments involving human players

The underlying assumption of AT is that humans’ cognitive biases cause

them to perceive a slightly different probability distribution of possible action705

than the actual (true) distribution. This distortion may in turn lead them to

take non-optimal actions. The idea behind considering AT in SG is to mod-

ify the leader’s strategy by taking into account the (human) follower’s biases

as postulated by AT. Consequently, the AT-adjusted leader’s strategy exploits

this non-perfectly-rational behavior of the follower, which results in potentially710

better outcomes when the opponent is, in fact, a human. Hence, in order to

make a comprehensive assessment of the proposed AT formulation, it is crucial

to perform experiments not only against other methods but also against hu-

mans. To this end, the authors have developed a game portal [28] and tested

the two proposed AT formulations: ATSG (17) and ATSGL (18) by playing715

SSGs against humans who took the role of the follower.

5.1. Experimental setup

A group of volunteers (Math. and CS students at the Warsaw University of

Technology in Poland) were asked to play the role of the follower against the

system-generated leader’s strategies. The leader’s strategy in a given gameplay720

either accounted for or ignored the potential AT bias of the follower. This

information was not revealed to the human player.

Game instances were a subset of 5-steps WNZ games played according to

the rules defined in Section 4.1. Before each game, the user had 15 minutes to

familiarize themselves with the opponent’s (leader’s) strategy. As per Stackel-725

berg Game rules, the human participant did not know the exact sequence of the

leader’s moves planned to be played. He/she could only estimate the position

of the leader in subsequent time steps based on the presented probabilities (the

leader’s mixed strategy). This strategy (with or without considering the AT
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bias) was precomputed by the algorithms described in Section 2.3. The game730

was presented in the form of a directed multigraph with the weights of the edges

representing the probabilities of given moves in subsequent time steps.

The strategy committed to by the leader was visualized using colored arrows

(see Figure 9) with the probabilities of the leader’s actions/moves in subsequent

time steps. Colors indicate possible moves in subsequent time steps according735

to the legend presented in the right part of the figure. The horizon of the

currently visible strategy (in time steps) could be adjusted by the participant

using a slider. Selecting (“clicking on”) any of the arrows representing a single

move in a given leader’s mixed strategy hid all the pure strategies except those

that included the indicated (“clicked”) move.740

In each game visualization presented to the experiment participant the po-

sition of his/her unit was denoted by a dark shaded circle and the targets were

marked as green triangles (cf. Figure 9). The game was played for a fixed

number of steps. If the player reached any of the targets within the time step

limit and was not caught there, his/her result was equal to the first value in the745

brackets associated with this target. If the player was caught by the opponent,

he/she received a penalty score equal to the second value in the brackets cor-

responding to the vertex in which the interception took place. Otherwise, the

player received a payoff of 0.

Each participant played a given game instance 5 times in a row and then750

switched to the next one. In these 5 consecutive games, the distribution of

payoffs was fixed. The human player could either differentiate his/her strategy

or stick to a particular one, although the realization of the leader’s mixed strategy

could also vary, i.e. the leader could behave differently (another realization of

his/her mixed strategy could have materialized) even though the human player755

repeated the same strategy.

The time for each action selection (moving to one of the adjacent vertices or

staying in the occupied one) was set to 90 seconds. If no move was committed

within the allotted time, the user’s unit remained in the same vertex. There

were three possible game endings: the user’s unit was caught by the leader, the760
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unit reached the target without being caught, or the step limit was reached.

After the completion of the game, the payoff was presented to the user and

he/she was offered to play again.

Figure 9: Example of the leader’s strategy presentation in the web-based game portal [28].
Green triangles denote targets. The numbers below the nodes are the player’s payoffs in the
case of catching the follower in a given node. Arrows in different colors indicate the possible
moves in subsequent time steps, as denoted by the legend presented in the right part of the
figure, with probabilities of the leader selecting a given move in subsequent time steps. The
horizon of the currently visible strategy (time steps) could be adjusted by the participant
using a slider.

Each participant decided how many rounds of gameplay he/she wished to

take. Some of them chose to play only one game, others played more than 80765

games. Each time a user entered a new game, one of the three following leader’s

strategies was randomly chosen and presented to him/her:

• no-AT - the Stackelberg Equilibrium strategy for the leader was computed

with no bounded rationality perturbations;

• ATSG - the leader’s strategy was computed with a straightforward An-770

choring Theory formulation (17). This form of an AT implementation is

feasible only for the two metaheuristic approaches and is not feasible for
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MILP methods;

• ATSGL - the leader’s strategy was computed according to a modified

ATSG formulation (18), feasible for both MILP and metaheuristic meth-775

ods.

Players were neither provided with game theory knowledge related to the

SE definition nor were they aware of the above-mentioned three different types

of leader’s strategy. Moreover, they were not informed about the experiment’s

purpose and were only provided with a brief tutorial describing the game rules780

and game platform navigation. Users had access to a brief technical tutorial

describing the rules of the games they played, the way the games were visualized,

and the way the leader’s strategy was presented (cf. Figure 9). In order to

increase the users’ engagement, the platform displayed leaderboards presenting

the players’ results and encouraging them to take more attempts to move up in785

the rankings.

5.2. Results

Out of the 25 game instances, the ones with at least 5 playthroughs recorded

for each of the three leader strategy derivation methods were selected. This way

16 games and 1056 playthroughs were evaluated.790

Table 3 presents the average leader’s payoffs of the 3 methods of leader

strategy calculation for each of these 16 games. The last row presents the

average ranking positions of these methods. For each game the possible payoffs

came from the interval [−1; 0.2] and a neutral value (relevant when the game

ended with no interception and without reaching the target) was set to 0. Best795

results were obtained by a pure ATSG strategy with an average payoff of −0.106

and an average ranking position equal to 1.75. A close runner-up was the

ATSGL strategy with the respective scores equal to −0.110 and 1.81. The no-

AT strategy (without AT modifications) performed visibly worse in the majority

of the games, with an average payoff over 20% lower. The differences are not800

statistically significant with p-values for the 1-tailed paired t-test equal to 0.187

(no-AT vs. ATSG), 0.176 (no-AT vs. ATSGL), and 0.387 (ATSG vs. ATSGL).
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Table 3: Average leader’s payoffs with average ranks of the three methods of leader strategy
calculation. Best results are presented in bold.

game id no-AT ATSG ATSGL

superdiv-02 −0.051 0.000 0.000
superdiv-09 −0.176 −0.100 −0.121
superdiv-16 −0.093 −0.074 −0.123
superdiv-17 −0.222 −0.159 −0.132
superdiv-28 0.000 −0.003 −0.010
superdiv-30 0.000 0.028 −0.151
superdiv-42 0.137 0.092 0.190
superdiv-43 0.086 0.088 0.021
superdiv-46 0.000 0.000 0.000
superdiv-51 −0.229 −0.136 −0.114
superdiv-56 −0.305 −0.113 −0.009
superdiv-59 −0.220 −0.311 −0.108
superdiv-68 0.090 0.059 −0.233
superdiv-70 0.000 0.010 0.000
superdiv-86 −0.282 −0.106 0.000
superdiv-95 −0.924 −0.968 −0.963

Avg payoff −0.137 −0.106 −0.110
Avg rank position 2.13 1.75 1.81

Generally, the results indicate that both pure ATSG and its approximation

ATSGL proposed in this paper present a viable alternative to the fully-rational

Stackelberg Equilibrium approach in real-life scenarios in which humans play the805

role of the follower. In such cases an assumption about the bounded rationality

of the follower underpins the two AT implementations, leading to higher results

for the leader, whose strategy exploits the human-specific bias.

Figure 10 presents the number of playthroughs vs. categorized average pay-

offs for the 3 methods of leader strategy derivation. The main difference between810

the ATSG/ATSGL strategies and no-AT can be observed within the range of

positive payoffs. The leader’s payoff for catching the follower in the target /

in any non-target vertex was equal to 0.2 / 0.1, respectively. Apparently the

ATSG/ATSGL strategies distinctly more frequently led to catching the follower

(directed by a human) in the targets than in the case of employing the no-AT815

strategy, which tended to catch the follower in non-target vertices. A possible
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Figure 10: Number of playthroughs vs. categorized average payoffs for 3 methods of leader
strategy calculation.

explanation of this phenomenon is that the follower, due to his/her bounded

rationality, perceives the probability of being caught in a target as smaller than

it really is, so he/she has a tendency to take higher risk and more often at-

tempts to reach one of the targets than in the case of an undistorted probability820

perception. ATSG/ATSGL strategies exploit this biased perception of proba-

bilities and adjust the leader’s strategy accordingly, catching the opponent in

the targets more frequently and yielding better payoffs.

6. Conclusions

This work considers an SG formulation in which the follower is not perfectly825

rational. Such a setting is motivated by real SG scenarios, in which humans

performing the role of the follower are prone to certain inefficiencies in their per-

ception and/or assessment of the leader’s strategy. A particular implementation

of the follower’s bounded rationality considered in the paper refers to Anchoring

Theory [18]. AT assumes the existence of a certain distortion (towards the uni-830

form distribution of probabilities of possible actions) of the follower’s perception

of the leader’s mixed strategy. The leader, being aware of this distortion, can

exploit this weakness in their strategy formulation.

This paper proposes two efficient formulations of AT in the context of sequen-

tial extensive-form SGs. The first one (ATSG) is a straightforward extension835
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of SG following directly from the AT definition. The other one (ATSGL) is

a simplified version of ATSG with linear constraints, suitable for MILP meth-

ods. In the paper, ATSG is implemented for two metaheuristic approaches:

O2UCT [24, 25] and EASG [26]. ATSGL, in turn, is implemented for three

state-of-the-art MILP methods – two exact ones: BC2015 [23] and C2016 [21],840

and one approximate: CBK2018 [22].

Experimental results on three sets of games show that non-MILP methods

capable of using the non-simplified ATSG formulation outperform MILP meth-

ods in terms of the leader’s payoff when playing against an AT-biased follower.

Furthermore, they scale better for larger games as far as time is concerned.845

The flexibility of non-MILP solutions is an additional advantage in the con-

text of BR. This flexibility stems from virtually no restrictions being imposed

on the form of the BR representation. Unlike MILP methods, which require a

linear form of BR-related constraints, non-MILP solutions are suitable for the

implementation of other, more complex BR models.850

The efficacy of the ATSG implementation was additionally verified in ex-

periments involving humans in the role of the follower. The results show that

both AT implementations outperform the fully-rational Stackelberg Equilib-

rium approach. Although this advantage is not statistically significant (due to

the limited number of human-involving experiments), the behavioral differences855

between ATSG/ATSGL and no-AT cases, which are presented in Figure 10

and stem from the AT-biased follower’s perception, support the claim about

the usefulness of considering the AT bias in real-life contexts, in which SSGs

are employed to predict the behavior of human followers (terrorists, poachers,

thieves, etc.).860

The advantage of using the ATSG model in Sequential Stackelberg Games

is the higher leader’s average payoff compared with the baseline case which

assumes that the follower is perfectly rational. A direct reference to the psycho-

logically-grounded concept of Anchoring Theory (related to the human decision-

making process) is an additional asset of the ATSG application. At the same865

time, the non-linear nature of the ATSG distortion hinders its direct implemen-
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tation for the MILP/LP methods of solving Stackelberg Games, and for this

reason, an approximate linear ATSGL version of ATSG is also proposed in this

paper.

It should be noted, however, that AT, while very popular, is not the only BR870

model suggested in psychological research and, to the best of our knowledge,

there is no consensus on a unique BR model that best approximates the human

decision-making process.
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Appendix A. Nomenclature and symbols

The following abbreviations are used in the paper:
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AT – Anchoring Theory — the Bounded Rationality model considered in this

paper

ATSG – A generalization of the AT model suitable for Sequential Games pro-1055

posed in this paper, defined in equation (17)

ATSGL – A linear approximation of ATSG proposed in this paper, defined in

equation (18)

BC2015 – A MILP-based method for solving Sequential Stackelberg Games,

published in [23]1060

BR – Bounded Rationality

C2016 – A MILP-based method for solving Sequential Stackelberg Games,

published in [21]

CBK2018 – A heuristic method employing MILP and game simplification for

solving Sequential Stackelberg Games, published in [22]1065

EASG – An Evolutionary-Algorithm-based method for solving Sequential Stack-

elberg Games, published in [26]

O2UCT – AMonte-Carlo-sampling-based method for solving Sequential Stack-

elberg Games, published in [25]

SEG – A set of benchmark games used in [23]1070

SG – Stackelberg Games

SSG – Stackelberg Security Games

WHG – A set of benchmark games defined in [27]

WNZ – A set of benchmark games defined in [25]

The following notation is used throughout the paper:1075

• δi – mixed strategy of player i, i = l (leader) or i = f (follower)
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• πi – pure strategy of player i, i = l (leader) or i = f (follower)

• σi – sequence of moves of player i, i = l (leader) or i = f (follower)

• pi, qi – commonly used to denote a probability of some event i

• a – commonly denotes an action (move) to be played in the game; usually1080

used with a subscript

• u(·, ·) – expected utility of a game when players play their respective strate-

gies/move sequences

• I – denotes an information set in the game
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