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Abstract

Decision trees are widely used in machine learning due to
their simplicity and interpretability, but they often lack ro-
bustness to adversarial attacks and data perturbations. The pa-
per proposes a novel island-based coevolutionary algorithm
(ICoEvoRDF) for constructing robust decision tree ensem-
bles. The algorithm operates on multiple islands, each con-
taining populations of decision trees and adversarial pertur-
bations. The populations on each island evolve independently,
with periodic migration of top-performing decision trees be-
tween islands. This approach fosters diversity and enhances
the exploration of the solution space, leading to more robust
and accurate decision tree ensembles. ICoEvoRDF utilizes a
popular game theory concept of mixed Nash equilibrium for
ensemble weighting, which further leads to improvement in
results. ICoEvoRDF is evaluated on 20 benchmark datasets,
demonstrating its superior performance compared to state-of-
the-art methods in optimizing both adversarial accuracy and
minimax regret. The flexibility of ICoEvoRDF allows for the
integration of decision trees from various existing methods,
providing a unified framework for combining diverse solu-
tions. Our approach offers a promising direction for develop-
ing robust and interpretable machine learning models.

Introduction
Decision trees (DTs) are a popular tool in the field of ma-
chine learning due to their inherent simplicity, interpretabil-
ity, and efficiency. Their capacity to model complex deci-
sion boundaries in an understandable manner has made them
a popular choice for both academic research and practical
applications (Rokach and Maimon 2005). However, single
DTs often struggle with issues such as overfitting, lack of ro-
bustness to noise, and limited generalization capabilities. To
mitigate these problems, ensembles of DTs (Banfield et al.
2006), such as random forests, have been developed that ag-
gregate multiple trees to improve overall performance.

Despite these advancements in constructing robust and
accurate DT ensembles, several challenges remain. Tradi-
tional methods for creating robust decision trees (RDTs) and
robust decision forests (RDFs) often rely on only one partic-
ular robustness metric, limiting the practical applicability of
these methods in real-world scenarios. Balancing multiple
objectives, such as accuracy, robustness, and computational
efficiency is often not adequately addressed. Existing meth-

ods also often struggle to maintain diversity within the en-
semble, leading to reduced effectiveness.

We aim to develop better methods for building and com-
bining decision tree ensembles (RDFs). Evolutionary algo-
rithms (Michalewicz 2013), which mimic natural selection
to solve complex problems, have demonstrated significant
potential in optimizing complex, high-dimensional search
spaces (Yu and Gen 2010), making them a suitable candi-
date for evolving decision tree ensembles. However, existing
evolutionary approaches operate only with a single popula-
tion and produce single decision trees (Żychowski, Perrault,
and Mańdziuk 2024).

To address these limitations, we propose a novel island-
based coevolutionary approach named ICoEvoRDF (Island-
based CoEvolutionary Robust Decision Forests). The ap-
proach is inspired by island models (Tanese 1989; Skolicki
and De Jong 2004) in evolutionary computation. Island
models subdivide a population into several isolated sub-
populations, each evolving independently. Occasionally, in-
dividuals migrate between islands, introducing beneficial
traits and enhancing overall diversity (Bull et al. 2007).
This approach has been successful in various optimization
problems, often performing better than traditional single-
population methods (Skolicki and De Jong 2004; Skolicki
2005; Luong, Melab, and Talbi 2010).

In the context of DT ensembles, the use of island mod-
els can be particularly advantageous. By evolving multiple
populations of RDTs in parallel, each with different initial
conditions and evolutionary trajectories, we can generate a
diverse set of trees that, when combined, form a more ro-
bust and versatile forest. Moreover, this approach may also
be advantageous for creating single RDTs, as previous stud-
ies (Żychowski, Perrault, and Mańdziuk 2024) have demon-
strated significant benefits from repeated runs of evolution-
ary methods.

Additionally, we employ the game-theoretic concept of
Mixed Nash Equilibrium (MNE) to effectively weight the
decision trees in the forest. Unlike uniform weighting meth-
ods, MNE optimizes tree contributions by reflecting the full
set of perturbations encountered in adversarial settings. The
island-based coevolutionary framework naturally generates
diverse input data perturbations, which are crucial for cap-
turing the range of scenarios represented by the MNE. Inte-
grating MNE into our coevolutionary framework enhances
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robustness and performance, demonstrating the power of
combining game theory with coevolutionary methods.

Contributions
The main contributions of the work are:

• a novel island-based coevolutionary approach (ICo-
EvoRDF) for creating a mixture of Robust Decision
Trees (RDTs), which utilizes a new game-theoretic ap-
proach based on Mixed Nash Equilibrium (Fudenberg
and Kreps 1993) for weighting decision trees within a
forest. The method is adaptable to optimizing various tar-
get metrics, such as adversarial accuracy and minimax re-
gret. Furthermore, it is able to construct individual RDTs,
that are superior to those constructed by evolutionary-
based approaches with a single population;

• potential for ICoEvoRDF to improve results of other
state-of-the-art (SOTA) methods by including their re-
sulting decision trees in the initial population of one or
more islands, thus allowing for the combination of mul-
tiple solutions into a single, synergetic framework;

• comprehensive analysis of how specific components of
the proposed solution (e.g., number of islands, Nash-
based voting, various initialization methods, population
diversity) influence its performance and outcomes,

• experimental validation showing that ICoEvoRDF sig-
nificantly outperforms existing methods for ensemble of
trees as well as single DTs, with improvements of up to
0.010 in adversarial accuracy and 0.064 in minimax re-
gret across 20 benchmark datasets.

Problem definition
Let X ⊂ Rd be a d-dimensional feature space (inputs) and
Y be the set of possible classes (outputs). A standard clas-
sification task involves finding a function (model) h : X →
Y , where h(xi) = yi and yi is the true class of xi. The clas-
sification performance of h can be measured by its accuracy,
defined as:

acc(h) =
1

|X|
∑
xi∈X

I[h(xi) = yi], (1)

where I[h(xi) = yi] returns 1 if h predicts the true class of
xi and 0 otherwise.

Define Nε(x) = {z : ||z − x||∞ ≤ ε} as the set of points
within an L∞ (L-infinity norm) ball centered at x with ra-
dius ε. The adversarial accuracy of a model h is the lowest
accuracy over all possible perturbation sets constrained by
Nε, formally:

accadv(h, ε) =
1

|X|
∑
xi∈X

min
zi∈Nε(xi)

I[h(zi) = yi]. (2)

If ε is large enough, it may not be possible to train M ef-
fectively, and the adversarial accuracy would be low. How-
ever, low adversarial accuracy does not indicate whether the
reason is poor model robustness or impossibility of creating
such a model due to the high value of ε.

The max regret (Savage 1951) of a model h is the max-
imum regret among all possible perturbations z ∈ Nε. Re-
gret is defined as the difference between the best possible
accuracy on a particular perturbation and the accuracy that
h achieves:

regret(h, {zi}) = max
h′

acc(h′, {zi})− acc(h, {zi}), (3)

where acc(h, {zi}) is the accuracy achieved by model h
when the feature set {xi} is replaced with {zi}. Max regret
can be expressed as:

mr(h) = max
zi∈Nε(xi)

regret(h, {zi}). (4)

Max regret is defined as the maximum difference between
the result of a given model and the result of the optimal
model for any input data perturbation within a given range.
Minimizing max regret is known as the minimax regret deci-
sion criterion. Minimax regret is a more comprehensive met-
ric than adversarial accuracy because it takes into account
the performance of a model on both clean (non-perturbed)
and adversarial (perturbed) data, so it is less sensitive to the
choice of ε.

The problem addressed in this paper is finding a decision
forest (ensemble of decision trees) trained on X that for a
given ε optimizes (maximizes for adversarial accuracy or
minimizes for max regret) a given robustness metric. The
final prediction from decision trees ensemble are obtained
by the weighted voting.

We use Mixed Nash Equilibrium (MNE) for
computing the weights of trees in an ensem-
ble. An MNE (T ,P) comprises a pair of mixed
strategies: T = {(T1, pT1

), . . . , (Tn, pTn
)}, and

P = {(P1, pP1
), . . . , (Pm, pPm

)}. In our case, those
are a set of DTs (T ) and perturbations (P), respectively,
with associated probabilities. (T ,P) fulfills the following
conditions: ∀T ′ ̸=T ,ET ,P [ξ(T ′,P)] ⪯ ET ,P [ξ(T ,P)]
and ∀P′ ̸=P ,ET ,P [−ξ(T ,P ′)] ⪯ ET ,P [−ξ(T ,P)], where
ξ(T ,P) is some performance metric calculated for a
“mixed” decision tree T and “mixed” perturbation P
(accuracy for adversarial accuracy or regret for max regret).

Note that the game is zero-sum because in robust opti-
mization the adversary aims to minimize the DT payoff.
Thus, the minimax theorem holds (v. Neumann 1928), guar-
anteeing that the MNE maximizes the robustness metric, i.e.,
maxT ′ minP′ ξ(T ′,P ′) = ET ,P [ξ(T ,P)] if (T ,P) is an
MNE. In addition, for zero-sum games, MNEs can be com-
puted in time polynomial in the strategy set size.

Related work
The problem of finding RDTs is well-established in the liter-
ature, and several methods of solving it have been proposed.
RIGDT-h (Chen et al. 2019) constructs robust decision trees
based on the concept of adversarial Gini impurity (Breiman
2017), which is a modification of the classical Gini impurity
adapted for perturbed input data. This method was further
improved in the GROOT algorithm (Vos and Verwer 2021),
which employs a greedy recursive splitting strategy similar
to traditional decision trees and evaluates splits using the ad-
versarial Gini impurity. Another algorithm, Fast Provably



Robust Decision Tree (FPRDT) (Guo et al. 2022), builds
robust decision trees by directly minimizing the adversar-
ial 0/1 loss through a greedy recursive approach, efficiently
evaluating potential splits using sorted threshold lists. The
algorithm ensures optimal splits only when beneficial, main-
taining both robustness and efficiency.

Since finding RDTs is an optimization problem, some
evolutionary-based methods were also proposed. Ranzato
and Zanella (2021) introduced a genetic adversarial train-
ing algorithm (Meta-Silvae) to optimize DT stability. Co-
evolutionary Algorithm for Robust Decision Trees (Co-
EvoRDT) (Żychowski, Perrault, and Mańdziuk 2024) con-
structs robust decision trees by maintaining two popula-
tions: one of decision trees and another of data perturba-
tions, allowing the trees to adapt and learn from the pertur-
bations. The populations alternately evolve using crossover,
mutation, and selection operators until a stopping condition
is met. The method emphasizes robustness by incorporat-
ing a game-theoretic approach to build a Hall of Fame (an
archive that preserves the best solutions found during the
algorithm’s run) with a Mixed Nash Equilibrium, enhanc-
ing decision tree robustness and population diversity. Co-
EvoRDT demonstrates strong performance in minimax re-
gret and adversarial accuracy, making it one of the state-of-
the-art algorithms.

Tree ensembles were also explored in the context of find-
ing robust classifiers as a natural subsequent step. Kantche-
lian, Tygar, and Joseph (2016) introduced a method to itera-
tively and recursively train robust decision trees using the L0

metric based on the original and adversarial examples. Vos
and Verwer (2021) proposed robust random forests based
on the original idea of random forests (Breiman 2001). An-
driushchenko and Hein (2019) use a robust boosting algo-
rithm based on adversarial exponential loss. Provably Ro-
bust AdaBoost (PRAdaBoost) (Guo et al. 2022) method is
built upon the AdaBoost algorithm (Freund, Schapire et al.
1996), a well-established method in machine learning that
combines multiple ”weak” learners to create a ”strong” clas-
sifier. PRAdaBoost utilizes the FPRDT algorithm mentioned
above as the base learner.

To the best of our knowledge, so far no other multi-
population approaches have been proposed for optimizing
RDTs or RDFs, and our method is the first successful at-
tempt in this area.

ICoEvoRDF algorithm
In this study, we introduce the Island-based CoEvolutionary
algorithm for constructing Robust Decision Forests (ICo-
EvoRDF). This approach draws inspiration from the biolog-
ical concept of speciation, where distinct populations evolve
in isolated environments with limited gene flow.

ICoEvoRDF operates on a fixed set of islands, denoted as
I, whose cardinality |I| is a user-defined parameter. Each
island I ∈ I maintains two coevolving populations: a de-
cision tree population IT and a perturbation population IP ,
analogously to the CoEvoRDT algorithm detailed in the pre-
vious section. A pseudocode of the proposed algorithm is
presented in the supplementary material.

Islands initialization. We initialize each island indepen-
dently. For the baseline implementation, the decision tree
population is initialized with small random trees (with a
maximum depth of 3). The potential advantages of alterna-
tive initialization methods, such as utilizing the results of
other algorithms are discussed in Section .

The perturbation population is sampled uniformly from
the space of all possible perturbations of the input data
within a given radius ϵ. For input data selection, we propose
to assign a unique training set to each island. It mirrors the
approach of classic random forests and is achieved by sam-
pling with replacement from X until each island’s training
set contains |X| instances. This approach permits the repeti-
tion of certain training instances across multiple islands.
Islands evolution. Each island evolves independently for a
predetermined number of generations, denoted by ng . This
process entails coevolution between the DT and perturbation
populations, similarly to the CoEvoRDT algorithm. The DT
and perturbation populations evolve alternately for ng gen-
erations, each involving standard evolutionary operations:
crossover, mutation, evaluation, and selection. The mutation
operator randomly performs one of the three following ac-
tions: (i) replacing a subtree with a randomly generated one,
(ii) changing the information in a randomly selected node
(e.g., a new splitting value or operator), or (iii) pruning a
randomly selected subtree. The crossover operator randomly
selects one node in each of two individuals and exchanges
the corresponding subtrees, generating two offspring added
to the population. In the perturbation population, each pair
(input instance, attribute) has a probability 0.5 of being per-
turbed, with a new feasible value assigned (according to the
epsilon constraint). The crossover randomly mixes input in-
stances from both individuals.

Evaluation is conducted against individuals from the op-
posing population (DTs are evaluated against perturbations
and vice versa). Furthermore, a Hall of Fame (HoF) mech-
anism inspired by Nash equilibrium theory has been incor-
porated into ICoEvoRDF, which proved to be beneficial in
CoEvoRDT method. HoF maintains a mixture of individu-
als from both populations which are used during the evalu-
ation stage. The final stage involves binary tournament se-
lection, which selects individuals for the next generation. In
this process, individuals are randomly paired, and the one
with higher fitness has a greater probability of being chosen.
The size of the population is fixed, i.e., in each generation
the same number of individuals are promoted.
Migration. Migration between islands is an important com-
ponent of island-based evolutionary algorithms, differenti-
ating them from |I| independent runs of a single island. If
subpopulations evolve in complete isolation (without migra-
tion), they might converge prematurely to suboptimal solu-
tions due to the lack of new genetic material (Gong et al.
2015). Migration introduces new genetic traits, reducing the
risk of premature convergence and potentially leading to su-
perior solutions through the sharing of beneficial traits.

For each island I , we define a set of neighboring islands
η(I) to which I transmits information about its discovered
solutions. The connections between islands and their neigh-



bors constitute a graph referred to as the island topology. For
instance, a ring topology forms a bidirectional cycle where
each island possesses exactly two neighbors: ∀I∈I |η(I)| =
2. Figure 1 provides an overview of the ICoEvoRDF algo-
rithm and illustrates an example of a ring topology.

After every ng generations of both the DT and perturba-
tion populations, the top ktop fittest (i.e., highest fitness) de-
cision trees from each neighboring island In ∈ η(I) are mi-
grated (copied) into the recipient island’s DT population:

IT = IT ∪
⋃

In∈η(I)

V
ktop

ξ (ITn ), (5)

where V
ktop

ξ (ITn ) is the ktop fittest decision trees from the
DT population of the neighbor island ITn according to the op-
timized metric ξ. The ktop fittest perturbations are migrated
in the same way.
Stop condition. This iterative process persists until at least
one of the following two conditions is fulfilled: either a total
of lg generations have elapsed, or the fittest DT across all
islands has not improved within the last lc generations.

Upon termination, either a single, globally fittest DT is
selected across all islands, or an ensemble of DTs from all
islands are aggregated to construct a decision forest (DF).
Decision forest composition. For creation of a DT ensem-
ble we perform a weighted voting among the fittest DT rep-
resentatives from all islands.The simplest and most common
approach is to assign equal contribution to each island repre-
sentative. However, it may not be optimal, as the efficacy of
the generated trees may vary, rendering equal contributions
undesirable. Leveraging the fact that each island also gener-
ates a population of perturbations, we propose Nash-based
voting (NV). This approach frames the scenario as a two-
player game between DTs (represented by island representa-
tives) and perturbations. The DT player, PDT , chooses their
strategy from a strategy set ΠPDT

= {V 1
ξ (I

T )}I∈I , while
the perturbation player, PP , chooses their strategy from a
strategy set ΠPP

=
⋃

I∈I IP . Then, a mixed Nash equilib-
rium is computed for this game. We use the Lemke-Howson
algorithm (Lemke and Howson 1964), which has worst-case
exponential time complexity, but is fast in practice (and has
average linear time for random games (Codenotti, De Rossi,
and Pagan 2008)). In the proposed Nash-based voting (NV)
probabilities from the mixed equilibrium DT strategy T are
directly used for voting weights.

We also explored an alternative approach to extracting
from each island for the final ensemble more DTs than only
the fittest one. These experiments resulted in only marginal
improvement (less than 0.1%), coupled with increased com-
putational overhead and complexity of the final model.

Experimental setup
Tested benchmarks. The proposed method was evaluated
on 20 widely used classification benchmark problems with
varying characteristics, including the number of instances
(from 351 to 70000), features (4 – 3072), and perturbation
coefficients ε (0.01 – 0.3). All selected datasets have been
utilized in prior studies referenced in the Related Work sec-
tion and are publicly available at https://www.openml.org.

The main parameters of the datasets (perturbation coeffi-
cient, number of instances, features, and classes) are pre-
sented in supplementary material.

Parameterization. For the experiments conducted in this
study, we employed the same set of parameters across all
islands and their values followed recommendation from Co-
EvoRDT authors. Namely, decision tree population size
NT = 200, perturbation population size NP = 500, num-
ber of consecutive generations for each population np = 20,
number of best individuals from the DT population involved
in the perturbations evaluation Ntop = 20, crossover prob-
ability pc = 0.8, mutation probability pm = 0.5, selection
pressure ps = 0.9, elite size e = 2, HoF size NHoF = 200.
Generations without improvement limit lc was set to 100 and
generation limit lg = 1000.

Preliminary evaluations were conducted to assess various
migration topologies, such as ring, star, and circle configu-
rations. The ring topology (depicted in Figure 1) yielded the
most favorable results and was thus used for all experiments
presented in the subsequent section. A more comprehensive
discussion and detailed results for different topologies can
be found in the supplementary material. The number of gen-
erations between migrations, ng , was set to 40.

The number of islands, |I|, was fixed at 10 to main-
tain comparable computational time to the state-of-the-art
(SOTA) method, PRAdaBoost. However, our experiments
suggest that further increases in the DT population size (NT )
or the number of islands |I| may lead to enhanced perfor-
mance. A detailed analysis of the relationship between pop-
ulation size/number of islands, computational time, and ro-
bustness can be found in the supplementary material. This is
also related to interpretability which is also important aspect
in the context of DTs. While adding more DTs to the forest
can further (slightly) enhance robustness, it also deteriorates
the model’s overall interpretability.

All results for nondeterministic methods presented in
the next section represent the average of 20 independent
runs. We refer the reader to the supplementary material
for detailed results about their variations (standard devi-
ations). Statistical significance was checked according to
the paired t-test with p-value ≤ 0.05. All tests were ex-
ecuted on an Intel Xeon Silver 4116 processor operat-
ing at 2.10GHz. The CoEvoRDT source code is available
at github.com/zychowskia/ICoEvoRDF. We employed the
Nashpy Python library (Knight and Campbell 2018) imple-
mentation of the Lemke-Howson algorithm for computing
the Mixed Nash Equilibrium. The CART method (Breiman
2017) was used to determine the reference tree for minimax
regret (the tree with the highest accuracy for a given per-
turbation). The final results for minimax regret were com-
puted based on 105 randomly generated perturbations (see
supplementary material for reasoning) – the same for all
tested methods. The adversarial accuracy results were calcu-
lated using the exact method based on Mixed Integer Linear
Programming (Kantchelian, Tygar, and Joseph 2016), imple-
mented by (Chen et al. 2019).



Figure 1: The ICoEvoRDF scheme. The illustration shows 4 islands with ring migration topology. Each island contains two
populations: DTs and perturbations which are developed alternately using evolutionary operators.

Results and discussion
Trees ensemble models. Tables 1 and 2 present the results
for ensemble methods. GROOT, FPRDT, and CoEvoRDT
construct decision forests based on their respective under-
lying DT creation algorithms, analogously to the standard
random forest algorithm.

PRAdaBoost and CoEvoRDT boosting are boosting
methods that combine multiple weak learners (FPRDT and
CoEvoRDT, respectively) to create a stronger model. Each
DT is trained sequentially, with an emphasis on rectifying
errors made by previous trees. Misclassified instances are
assigned greater weights to enhance overall accuracy. The
final model is a weighted sum of all DTs.

In terms of adversarial accuracy, the proposed ICo-
EvoRDF algorithm achieved superior results on 17 bench-
marks, for 9 of them with statistical significance. The
most competitive non-evolutionary method, PRAdaBoost,
yielded the highest score on two datasets. With respect to
the max regret metric, the proposed approach outperformed
all other methods across all benchmark datasets, in each case
with statistical significance).

We also explored the combination of the strongest non-
evolutionary method, FPRDT, with the proposed coevolu-
tionary islanding approach. This was accomplished by ini-
tializing one island with the FPRDT algorithm (denoted by
the suffix “+ FPRDT”), while all other islands were initial-
ized with random DTs. For some datasets (particularly those
where FPRDT performed well, such as the diabetes dataset)
they further improved the results.

A comprehensive analysis of standard deviations (std dev)
for each method is available in the supplementary material.
Notably, among the top-performing methods, PRAdaBoost
exhibits an average std dev of 0.0085, while the ICoEvoRDF
family of methods demonstrates a std dev of 0.0100.
Ablation study. To assess the influence of specific ICo-
EvoRDF components, we conducted an ablation study. We
tested ICoEvoRDF with an alternative voting method—
equal voting (EV). Instead of calculating the mixed Nash
equilibrium and using their probabilities as voting weights,
EV assigns equal contribution to each island representative.
This approach is common in classical random forest settings.

Another tested aspect of ICoEvoRDF was the input data

selection. In the baseline version, a unique training set is as-
signed to each island by sampling with replacement. To eval-
uate the influence of this strategy, we tested an alternative
approach: selecting the same input (SI) of all training exam-
ples as the training dataset X for each island. The results of
these ablation studies are presented in Tables 1 and 2. Even
the simplified island-based model with EV and SI settings
(ICoEvoRDFEV

SI ) outperformed the baseline CoEvoRDT
forest method. Further improvements were observed with
the incorporation of Nash voting (ICoEvoRDFSI ) and dis-
tinct input sets for each island (ICoEvoRDFEV ). The most
significant improvement was achieved by combining NV
with distinct input sets, i.e., ICoEvoRDF.

Additional experiments (presented later in this section) in-
dicate that these improvements are correlated with increased
diversity in the generated DT ensembles. Utilizing differ-
ent inputs for each island enhances the diversity of the final
ensemble, while Nash voting effectively assigns weights to
these diverse DTs. This synergy between differentiated in-
puts and Nash voting leads to a significant improvement in
performance.
Computation time. Due to space limits, a detailed compu-
tation time comparison is provided in the supplementary ma-
terial. Here, we only report the sum of the average compu-
tation times across all benchmarks and discuss the general
conclusions.

Methods for creating single DTs (FPRDT and Co-
EvoRDT) exhibit significantly shorter average computation
times (FPRDT: 246s, CoEvoRDT: 727s) compared to en-
semble methods (PRAdaBoost: 6972s, CoEvoRDT boost-
ing: 7606s, ICoEvoRDF: 6845s, ICoEvoRDF+FPRDT:
7091s). Computation times for all ensemble methods are
of the same order of magnitude, ensuring a fair comparison
across methods under a similar time constraint. The scalabil-
ity and performance of ICoEvoRDF under increased compu-
tational budgets are presented in the supplementary material.

The results presented above do not utilize parallelization,
which could substantially reduce the computation time for
non-boosting ensemble methods (CoEvoRDT forest, ICo-
EvoRDF, and ICoEvoRDT + FPRDT). Parallelization is
straightforward for the CoEvoRDT forest, as each run of
the CoEvoRDT algorithm is independent and can be exe-



dataset Random
forests

GROOT
forests

FPRDT
forest

CoEvoRDT
forest PRAdaBoost

CoEvoRDT
boosting ICoEvoRDFEV

SI ICoEvoRDFSI ICoEvoRDFEV ICoEvoRDF
ICoEvoRDF

+ FPRDT
ionos 0.112 0.787 0.791 0.793 0.796 0.798 0.797 0.796 0.796 0.799 0.801
breast 0.217 0.884 0.873 0.885 0.879 0.899 0.891 0.894 0.896 0.900 0.900
diabetes 0.452 0.648 0.649 0.621 0.654 0.644 0.625 0.636 0.646 0.647 0.651
bank 0.509 0.641 0.658 0.661 0.668 0.669 0.667 0.670 0.664 0.673 0.672
Japan3v4 0.519 0.658 0.669 0.679 0.682 0.684 0.684 0.688 0.684 0.688 0.690
spam 0.000 0.750 0.749 0.751 0.754 0.763 0.756 0.756 0.762 0.766 0.766
GesDvP 0.189 0.731 0.725 0.740 0.732 0.753 0.745 0.745 0.749 0.752 0.754
har1v2 0.233 0.792 0.828 0.844 0.860 0.851 0.855 0.858 0.847 0.854 0.860
wine 0.091 0.633 0.681 0.688 0.690 0.708 0.691 0.691 0.707 0.708 0.708
collision-det 0.325 0.726 0.791 0.804 0.800 0.820 0.810 0.812 0.815 0.822 0.822
mnist-1-5 0.000 0.925 0.964 0.964 0.969 0.975 0.969 0.972 0.968 0.976 0.976
mnist-2-6 0.000 0.823 0.919 0.917 0.924 0.925 0.923 0.925 0.922 0.926 0.926
mnist 0.000 0.632 0.750 0.747 0.761 0.763 0.755 0.759 0.759 0.764 0.764
F-mnist2v5 0.456 0.979 0.974 0.982 0.982 0.993 0.990 0.994 0.987 0.995 0.996
F-mnist3v4 0.044 0.839 0.861 0.869 0.867 0.879 0.877 0.877 0.877 0.884 0.884
F-mnist7v9 0.136 0.836 0.875 0.868 0.879 0.877 0.877 0.880 0.873 0.881 0.880
F-mnist 0.024 0.241 0.537 0.545 0.546 0.559 0.552 0.553 0.554 0.560 0.561
cifar10:0v5 0.302 0.526 0.683 0.690 0.691 0.699 0.694 0.696 0.697 0.702 0.703
cifar10:0v6 0.368 0.560 0.688 0.696 0.696 0.703 0.701 0.701 0.701 0.704 0.705
cifar10:4v8 0.296 0.498 0.665 0.665 0.671 0.671 0.674 0.674 0.673 0.675 0.675
AVERAGE 0.214 0.705 0.767 0.771 0.775 0.782 0.777 0.779 0.779 0.784 0.785

Table 1: Averaged adversarial accuracies for ensemble forests methods. The best results are bolded.

cuted concurrently. However, migration in islanding meth-
ods complicates parallelization, although it can be facil-
itated by incorporating shared memory. Each island can
store its ktop individuals from the last generation in this
shared memory, and instead of a synchronous migration
phase where each island sends its ktop individuals to neigh-
bors, islands can retrieve the individuals needing migration
from the shared memory. We have verified that this approach
does not impact the results and reduces computation time by
a factor of 8-10. A detailed discussion of this optimization
and its results can be found in the supplementary material.
For clarity of the ICoEvoRDT description, we have opted
to omit the details of this optimization from the main body
of the paper. Such parallelization cannot be implemented for
boosting methods (PRAdaBoost and CoEvoRDT boosting),
which is an additional advantage of the proposed island-
based approach.
Diversity analysis. We hypothesize that the performance
differences between different variants of the proposed algo-
rithm are related to the diversity of DTs generated by the
algorithm. To quantify the diversity within a set of DTs, we
measure the fraction of perturbed input instances for which
the predictions of each pair of trees in the set differ.

Formally, let T = {T1, T2, ..., Tk} represent the ensem-
ble of decision trees, and let X ′ = {x′

1, x
′
2, ..., x

′
m} de-

note the set of perturbed input instances. The diversity be-
tween two trees Ti and Tj is defined as: div(Ti, Tj) =
1
m

∑m
k=1 I[Ti(x

′
k) ̸= Tj(x

′
k)].

The average diversity of the ensemble is then given by:

avg div(T ) =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

div(Ti, Tj) (6)

and the maximum diversity is defined as:

max div(T ) = max
1≤i<j≤n

div(Ti, Tj) (7)

We conducted a diversity analysis for two variants: exter-
nal and internal diversity. External diversity was calculated
using the decision trees that comprise the final ensemble,
while internal diversity was assessed on the DTs within each
island population. The results of the diversity analysis are
presented in Table 3. Given that the voting method is inde-
pendent of diversity and does not influence its value, Nash
voting and equal voting were considered jointly.

Our first observation is that internal is significantly higher
than external diversity. This difference arises from the dy-
namic nature of the DT population evaluation, as each pop-
ulation potentially contains weaker DTs resulting from the
exploratory nature of mutation operations, leading to higher
internal diversity. Secondly, internal diversity appears to
be consistent across different methods, while external di-
versity varies. The primary proposed method, ICoEvoRDF,
achieves the highest average and maximum external diver-
sity across all datasets when compared to the method with-
out migration (N ICoEvoRDF) and the method using the
same training set for each island (ICoEvoRDFSI ). This sug-
gests that the introduction of migration and varying inputs
leads to a more diverse ensemble of DTs. Furthermore, in-
corporating FPRDT as an initialization for one island (ICo-
EvoRDF+FPRDT) further enhances diversity. These find-
ings suggest a positive correlation between the diversity of
the generated ensemble and the method’s performance. A
more diverse ensemble is likely to be more robust against
adversarial attacks and to generalize better to unseen data.

Single decision trees. While ICoEvoRDF is designed for
the construction of random decision forests, it can also be
utilized to produce a single DT by selecting the most robust
tree across all islands. This method will be referred to as
ICoEvoRDT. It resembles the N CoEvoRDT method pro-
posed in (Żychowski, Perrault, and Mańdziuk 2024), which
involves multiple independent runs of CoEvoRDT followed
by the selection of the best DT. However, the island model



dataset Random
forests

GROOT
forests

FPRDT
forest

CoEvoRDT
forest PRAdaBoost

CoEvoRDT
boosting ICoEvoRDFEV

SI ICoEvoRDFSI ICoEvoRDFEV ICoEvoRDF
ICoEvoRDF

+ FPRDT
ionos 0.094 0.088 0.061 0.052 0.060 0.045 0.046 0.046 0.048 0.044 0.044
breast 0.103 0.097 0.055 0.047 0.055 0.035 0.047 0.044 0.039 0.034 0.034
diabetes 0.202 0.194 0.111 0.092 0.113 0.027 0.076 0.045 0.029 0.026 0.026
bank 0.186 0.177 0.086 0.075 0.086 0.050 0.051 0.050 0.061 0.046 0.046
Japan3v4 0.107 0.106 0.063 0.060 0.062 0.027 0.028 0.025 0.032 0.025 0.025
spam 0.097 0.095 0.071 0.067 0.071 0.046 0.063 0.061 0.054 0.044 0.044
GesDvP 0.152 0.143 0.127 0.111 0.122 0.077 0.110 0.108 0.090 0.073 0.073
har1v2 0.105 0.100 0.066 0.063 0.061 0.020 0.020 0.018 0.023 0.019 0.019
wine 0.140 0.139 0.106 0.089 0.102 0.064 0.084 0.083 0.067 0.063 0.063
collision-det 0.142 0.137 0.088 0.059 0.084 0.032 0.041 0.041 0.036 0.030 0.031
mnist-1-5 0.249 0.234 0.066 0.053 0.067 0.046 0.052 0.047 0.054 0.044 0.044
mnist-2-6 0.268 0.253 0.066 0.054 0.063 0.047 0.048 0.046 0.053 0.045 0.045
mnist 0.395 0.381 0.118 0.109 0.112 0.065 0.081 0.077 0.076 0.061 0.062
F-mnist2v5 0.273 0.247 0.230 0.188 0.234 0.165 0.173 0.165 0.189 0.156 0.156
F-mnist3v4 0.290 0.269 0.225 0.196 0.220 0.146 0.176 0.167 0.179 0.135 0.136
F-mnist7v9 0.283 0.280 0.234 0.205 0.226 0.156 0.168 0.144 0.193 0.144 0.145
F-mnist 0.427 0.401 0.283 0.235 0.259 0.121 0.171 0.153 0.153 0.110 0.109
cifar10:0v5 0.419 0.380 0.305 0.231 0.287 0.137 0.173 0.166 0.156 0.130 0.129
cifar10:0v6 0.403 0.372 0.329 0.278 0.328 0.204 0.214 0.212 0.222 0.198 0.198
cifar10:4v8 0.408 0.392 0.326 0.275 0.310 0.208 0.211 0.203 0.215 0.205 0.205
AVERAGE 0.237 0.224 0.151 0.127 0.146 0.086 0.102 0.095 0.098 0.082 0.082

Table 2: Averaged max regret for ensemble forests methods. The best results are bolded.

diversity N CoEvoRDT ICoEvoRDFSI ICoEvoRDF ICoEvoRDF
+ FPRDT

external avg 0.037 0.038 0.045 0.054
external max 0.041 0.042 0.050 0.061
internal avg 0.107 0.110 0.111 0.109
internal max 0.200 0.211 0.209 0.210

Table 3: Diversity averaged over all benchmark datasets.

described in this paper introduces the crucial element of
migration between islands, each running an independent
version of CoEvoRDT. Our experiments indicate that this
migration mechanism significantly improves results, out-
performing both the baseline coevolutionary method Co-
EvoRDT and its simple rerun counterpart (N CoEvoRDT),
where the number of repetitions (N ) is equivalent to the
number of islands in ICoEvoRDT. This underscores the im-
portance of the individual migration concept detailed in the
ICoEvoRDF algorithm description section.

For all benchmarks, the incorporation of islanding with
individual migration yielded superior outcomes (averaged
over all benchmarks) – adversarial accuracy (AA): 0.779,
max regret (MR): 0.113, compared to the baseline method
CoEvoRDT (AA: 0.767, MR: 0.131) and all other competi-
tors: GROOT (AA: 0.718, MR: 0.158), FPRDT (AA: 0.765,
MR: 0.155), N CoEvoRDT (AA: 0.776, MR: 0.122). De-
tailed results are presented in the supplementary material.

Conclusions
In this paper, we introduced ICoEvoRDF, a novel island-
based coevolutionary algorithm for constructing robust deci-
sion forests. Our approach leverages the strengths of multi-
ple independently evolving populations of decision trees and
perturbations, with periodic migration of top-performing in-
dividuals between islands. This strategy fosters diversity and
promotes the exploration of a wider range of potential solu-

tions, leading to more robust decision tree ensembles.
Our experimental results on 20 datasets demonstrate the

effectiveness of ICoEvoRDF in optimizing both adversarial
accuracy and minimax regret metrics. The algorithm consis-
tently outperforms state-of-the-art methods, showcasing its
ability to generate highly robust decision trees and forests.
The flexibility of ICoEvoRDF allows for the integration of
decision trees from various existing methods, offering a uni-
fied framework for combining diverse solutions.

A notable aspect of our work is the trade-off between
model interpretability and robustness. ICoEvoRDF can gen-
erate more robust ensemble models, although their complex-
ity and the associated weighting may reduce interpretability.
Conversely, it can produce simpler single DTs that are less
robust but easier to interpret. The balance between robust-
ness and interpretability can be adjusted by the number of
islands, allowing to control which aspect is prioritized.

To the best of our knowledge, this is the first study where
mixed Nash equilibrium has been combined with an island-
based evolutionary algorithm. Our results demonstrate that
this synergy between coevolutionary methods and game the-
ory is highly effective. We believe that it holds significant
application potential also in other domains, worth further in-
vestigation. Future work can also focus on extending the ap-
plication of island-based coevolutionary algorithms to other
related tasks in machine learning. One promising direction
is investigating the use of ICoEvoRDF to ensure fairness
in machine learning models. By incorporating fairness met-
rics into the objective function and evolving decision trees
that minimize bias, we can potentially develop fairer and
more equitable decision-making systems. Another direction
of work can be using a similar setting for analysis of mod-
els properties (e.g., explainability) or constructing other ma-
chine learning models for which the target metric is not dif-
ferentiable or it is challenging to compute an exact value
(like robustness metrics presented in this paper).
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ICoEvoRDF pseudocode

Algorithm 1: ICoEvoRDF pseudocode.
1: Input:
2: X - training dataset
3: |I| - number of islands
4: ng - number of generations per island evolution phase
5: ktop - number of top individuals to migrate
6: lg - total number of generations limit
7: lc - number of generations without improvement limit
8: ξ - robustness metric to optimize (e.g., adversarial accu-

racy or minimax regret)
9: Initialize Islands:

10: for each island I ∈ I do
11: Initialize IT with random decision trees
12: Initialize IP by sampling perturbations from Nϵ(X)
13: Sample training subset for I from X with replacement
14: end for
15: Evolve Islands:
16: g ← 0
17: while g < lg and improvement within last lc generations do
18: for each island I ∈ I do
19: Evolve IT and IP for ng generations using CoEvoRDT

algorithm
20: Evaluate fitness of individuals in IT against IP and vice

versa
21: end for
22: Migrate ktop best DTs and perturbations from each neigh-

bor in η(I) to IT and IP , resp
23: g ← g + ng

24: end while
25: Construct Forest:
26: Select best DTs from each island: T best

i = V 1
ξ (I

T
i ) for i ∈ I

27: Compute mixed Nash equilibrium to get weights: wi for i ∈ I
28: Return: Weighted ensemble of T best

i with weights wi

Tested benchmarks

Table 1 presents 20 benchmark datasets used in method
evaluation. All selected datasets are publicly available
at https://www.openml.org and can be downloaded with
fetch openml function from the sklearn Python library.

dataset ε Instances Features Classes
ionos 0.2 351 34 2
breast 0.3 683 9 2
diabetes 0.05 768 8 2
bank 0.1 1372 4 2
Japan:3v4 0.1 3087 14 2
spam 0.05 4601 57 2
GesDvP 0.01 4838 32 2
har1v2 0.1 3266 561 2
wine 0.1 6497 11 2
collision-det 0.1 33000 6 2
mnist:1v5 0.3 13866 784 2
mnist:2v6 0.3 13866 784 2
mnist 0.3 70000 784 10
f-mnist:2v5 0.2 14000 784 2
f-mnist:3v4 0.2 14000 784 2
f-mnist:7v9 0.2 14000 784 2
f-mnist 0.2 70000 784 10
cifar10:0v5 0.1 12000 3072 2
cifar10:0v6 0.1 12000 3072 2
cifar10:4v8 0.1 12000 3072 2

Table 1: Properties of the tested benchmark datasets.

Results for single decision trees
Tables 2 and 3 provide a comparative analysis of vari-
ous methods for generating single DTs. Across all bench-
marks, the incorporation of islanding with individual mi-
gration (ICoEvoRDT and ICoEvoRDT + FPRDT) yielded
superior outcomes compared to the baseline coevolutionary
method CoEvoRDT and all other competitors. This suggests
that the island-based mechanism further enhances robust-
ness not only for DT ensembles but also for single DTs.

Computation times
Table 4 presents a comparison of computation times for the
most notable methods. For ICoEvoRDF, the difference in
computation time between voting methods (equal voting and
Nash voting) and island training subsets (same inputs and
different inputs) is negligible, thus only a single column is
dedicated to all these variants.

The methods designed for creating single decision trees
(FPRDT and CoEvoRDT) exhibit significantly shorter com-
putation times compared to the ensemble methods. This
is expected as ensemble methods involve training multiple
trees and potentially additional steps like boosting or island
evolution. Among the ensemble methods, PRAdaBoost, Co-
EvoRDT boosting, ICoEvoRDF, and ICoEvoRDF + FPRDT
have computation times within the same order of magnitude.



dataset CART RIGDT-h GROOT FPRDT CoEvoRDT CoEvoRDT
+ FPRDT N CoEvoRDT ICoEvoRDT ICoEvoRDT

+ FPRDT
ionos 0.310 0.701 0.783 0.795 0.791 0.795 0.796 0.796 0.797
breast 0.250 0.838 0.874 0.876 0.885 0.889 0.889 0.889 0.890
diabetes 0.542 0.569 0.623 0.648 0.617 0.648 0.637 0.627 0.650
bank 0.633 0.468 0.541 0.658 0.657 0.663 0.667 0.672 0.672
Japan3v4 0.576 0.564 0.584 0.667 0.665 0.668 0.678 0.688 0.688
spam 0.302 0.467 0.723 0.746 0.751 0.753 0.757 0.760 0.760
GesDvP 0.478 0.548 0.716 0.735 0.740 0.741 0.744 0.746 0.747
har1v2 0.232 0.707 0.806 0.804 0.818 0.820 0.838 0.856 0.856
wine 0.620 0.474 0.637 0.674 0.688 0.692 0.695 0.698 0.698
collision-det 0.743 0.764 0.784 0.792 0.798 0.803 0.807 0.811 0.811
mnist-1-5 0.921 0.957 0.954 0.966 0.964 0.969 0.971 0.973 0.973
mnist-2-6 0.862 0.919 0.917 0.922 0.917 0.922 0.924 0.925 0.925
mnist 0.673 0.704 0.743 0.742 0.745 0.754 0.756 0.758 0.759
F-mnist2v5 0.675 0.945 0.971 0.978 0.982 0.982 0.986 0.991 0.991
F-mnist3v4 0.632 0.793 0.819 0.865 0.869 0.870 0.875 0.880 0.881
F-mnist7v9 0.642 0.810 0.829 0.876 0.868 0.880 0.880 0.880 0.880
F-mnist 0.464 0.525 0.536 0.531 0.544 0.546 0.550 0.553 0.553
cifar10:0v5 0.296 0.347 0.485 0.678 0.685 0.693 0.697 0.700 0.701
cifar10:0v6 0.587 0.477 0.556 0.688 0.692 0.697 0.700 0.703 0.703
cifar10:4v8 0.256 0.488 0.473 0.661 0.663 0.664 0.669 0.673 0.673
AVERAGE 0.535 0.653 0.718 0.765 0.767 0.772 0.776 0.779 0.781

Table 2: Averaged adversarial accuracies for single decision trees. The best results are bolded.

ICoEvoRDF parallelization (see Section ) performed on 10
parallel processes significantly decreased computation time
by nearly a factor of 9.

ICoEvoRDF parallelization
In the main paper, we presented a simplified, non-
parallelized version of ICoEvoRDF. However, the algorithm
can be further optimized by enabling parallel computations
across all islands. Algorithm 2 provides pseudocode that in-
corporates parallelization to enhance the algorithm’s effi-
ciency. The key difference to the sequential version is the
approach to the migration process.

The parallelized version introduces a shared memory (S)
to facilitate migration in a parallel setting. After each island
completes its evolution phase, it stores its top ktop individ-
uals in this shared memory. Subsequently, each island re-
trieves the required individuals from its neighbors directly
from the shared memory, eliminating the need for explicit
communication or synchronization between islands during
migration. Thanks to this evolution of each island can hap-
pen concurrently, potentially leveraging multiple processing
cores or machines. This is indicated the phrase ”in parallel”
added to for loop that evolves the islands. The generation
counter g is updated by ng

|I| in line 25. This adjustment en-
sures that the total number of generations across all islands
remains consistent with the sequential version, as each is-
land now progresses ng generations in parallel.

ICoEvoRDF parameterization
ICoEvoRDF parameterization process was performed on
cod-rna dataset with 9 features, 2 classes, and 48565 in-
stances. This dataset was not used later in experimental eval-
uation described in the main paper. The algorithm was ex-

Algorithm 2: Parallel ICoEvoRDF pseudocode.
1: Input:
2: X - training dataset
3: |I| - number of islands
4: ng - number of generations per island evolution phase
5: ktop - number of top individuals to migrate
6: lg - total number of generations limit
7: lc - number of generations without improvement limit
8: ξ - robustness metric to optimize (e.g., adversarial accu-

racy or minimax regret)
9: S - shared memory

10: Initialize Islands:
11: for each island I ∈ I in parallel do
12: Initialize IT with random decision trees
13: Initialize IP by sampling perturbations from Nϵ(X)
14: Sample training subset for I from X with replacement
15: end for
16: Evolve Islands:
17: g ← 0
18: while g < lg and improvement within last lc generations do
19: for each island I ∈ I in parallel do
20: Evolve IT and IP for ng generations using CoEvoRDT
21: Evaluate fitness of individuals in IT against IP and vice

versa
22: Store ktop best DTs and perturbations from I in S
23: Retrieve ktop best individuals from neighbors in η(I)

from S and add them to IT and IP

24: end for
25: g ← g +

ng

|I|
26: end while
27: Construct Forest:
28: Select best DTs from each island: T best

i = V 1
ξ (I

T
i ) for i ∈ I

29: Compute mixed Nash equilibrium to get weights: wi for i ∈ I
30: Return: Weighted ensemble of T best

i with weights wi



dataset CART RIGDT-h GROOT FPRDT CoEvoRDT CoEvoRDT
+ FPRDT N CoEvoRDT ICoEvoRDT ICoEvoRDT

+ FPRDT
ionos 0.094 0.071 0.061 0.061 0.052 0.052 0.050 0.049 0.049
breast 0.103 0.069 0.059 0.057 0.049 0.049 0.048 0.047 0.047
diabetes 0.202 0.132 0.124 0.117 0.096 0.094 0.087 0.079 0.081
bank 0.186 0.108 0.090 0.089 0.076 0.076 0.069 0.062 0.062
Japan3v4 0.107 0.083 0.067 0.066 0.062 0.061 0.052 0.043 0.044
spam 0.097 0.083 0.074 0.074 0.070 0.069 0.066 0.062 0.063
GesDvP 0.152 0.133 0.129 0.131 0.114 0.114 0.113 0.111 0.111
har1v2 0.105 0.084 0.068 0.068 0.064 0.064 0.053 0.042 0.042
wine 0.140 0.127 0.111 0.109 0.090 0.090 0.087 0.084 0.084
collision-det 0.142 0.093 0.088 0.091 0.061 0.059 0.055 0.050 0.051
mnist-1-5 0.249 0.076 0.071 0.067 0.055 0.055 0.053 0.052 0.052
mnist-2-6 0.268 0.087 0.072 0.069 0.055 0.054 0.053 0.051 0.051
mnist 0.395 0.139 0.125 0.124 0.113 0.112 0.103 0.093 0.094
F-mnist2v5 0.273 0.249 0.223 0.238 0.196 0.196 0.190 0.183 0.183
F-mnist3v4 0.290 0.254 0.246 0.232 0.202 0.199 0.191 0.181 0.183
F-mnist7v9 0.283 0.251 0.237 0.240 0.208 0.207 0.196 0.184 0.185
F-mnist 0.427 0.337 0.292 0.286 0.238 0.237 0.219 0.201 0.201
cifar10:0v5 0.419 0.379 0.347 0.314 0.241 0.236 0.216 0.193 0.196
cifar10:0v6 0.403 0.368 0.342 0.341 0.289 0.289 0.269 0.248 0.249
cifar10:4v8 0.408 0.360 0.339 0.331 0.283 0.281 0.262 0.243 0.244
AVERAGE 0.237 0.174 0.158 0.155 0.131 0.130 0.122 0.113 0.114

Table 3: Averaged max regret for single decision trees. The best results are bolded.

ecuted 10000 times with parameter values set randomly,
i.e. for each run each parameter was drawn uniformly from
some predefined set of values:

• decision trees population size
NT : {10, 20, 50, 100, 200, 500, 1000}

• perturbations population size
NP : {100, 200, 500, 1000, 2000, 5000, 10000}

• number of consecutive generations for each population
lc : {1, 2, 5, 10, 20, 50, 100}

• the number of the best individuals from the decision trees
population involved in the perturbations evaluation
Ntop : {1, 2, 5, 10, 20, 50, 100, 200}

• crossover probability
pc : {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

• mutation probability
pm : {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

• selection pressure
ps : {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

• HoF size
NHoF : {0, 10, 20, 50, 100, 200, 500}

• generations without improvement limit
lc : {5, 10, 20, 50, 100, 200}

• generations limit
lg : {100, 200, 500, 1000, 2000, 5000}

Best values (with the lowest average minimax regret
across all runs) are bolded.

Topologies
We evaluated four distinct migration topologies as illustrated
in Figure 1: ring, cycle, star, and clique. These topologies
differ in the number of neighbors each island has: in the

ring topology, each island is connected to exactly 2 neigh-
bors; in the directed cycle topology, each island has a single
neighbor; in the clique topology, each island is connected to
all other islands, resulting in |I| − 1 neighbors; in the star
topology, one central island is connected to all other islands,
while these peripheral islands are connected only to the cen-
tral one.

Table 5 presents the results, including averaged adversar-
ial accuracy and maximum regret, for all tested topologies.
The ring topology yielded the best performance, followed
by the cycle and star topologies. The clique topology pro-
duced the poorest results, likely due to the excessive num-
ber of migrations, which effectively homogenized the pop-
ulation across islands. This high frequency of migration re-
duced the opportunity for niche development on individual
islands, causing them to converge towards a single, less di-
verse population.

Number of islands and population sizes
In all experiments presented in the main paper, we main-
tained the number of islands at 10 to ensure computational
time comparable to state-of-the-art methods. However, it re-
mains an open question how performance might improve
with an increased number of islands. Additionally, increas-
ing the number of decision trees within each island could
further enhance results. Clearly more islands and a larger
population of decision trees expand the search space, allow-
ing for the evaluation of more candidate trees.

Tables 6 through 11 present results from experiments con-
ducted on two datasets: diabetes and cifar-10:0v5. These re-
sults demonstrate that given more computation time (by in-
creasing both the number of islands or the size of the deci-
sion tree population) can lead to performance improvements.
Specifically, the data indicate that adding more islands yields



dataset FPRDT CoEvoRDT PRAdaBoost CoEvoRDT
boosting ICoEvoRDF ICoEvoRDF

+ FPRDT
ICoEvoRDF
parallelized

ionos 1 2 5 23 22 23 3
breast 1 2 6 20 20 21 3
diabetes 1 3 6 31 30 31 3
bank 2 6 8 67 49 51 6
Japan3v4 3 9 13 106 95 98 12
spam 4 13 42 151 141 145 18
GesDvP 4 11 76 112 90 94 12
har1v2 4 12 212 143 103 107 12
wine 6 2 23 20 20 26 2
collision-det 16 17 217 199 230 246 25
mnist-1-5 8 22 354 229 207 215 26
mnist-2-6 7 24 310 249 251 258 32
mnist 21 68 447 703 715 736 81
f-mnist2v5 8 23 521 255 212 220 27
f-mnist3v4 9 25 842 273 262 271 34
f-mnist7v9 9 26 431 282 212 221 23
f-mnist 19 79 754 817 668 687 78
cifar10:0v5 40 146 978 1409 1297 1337 147
cifar10:0v6 42 126 896 1345 1233 1275 133
cifar10:4v8 41 111 831 1172 987 1028 114
SUM 246 727 6972 7606 6845 7091 792

Table 4: Computation times (in seconds) for various methods on the benchmark datasets.

(a) ring (b) cycle

(c) star (d) clique

Figure 1: Tested islands migration topologies.

greater improvements compared to increasing the size of the
decision tree population. Notably, no substantial gains are
observed beyond 30 islands, suggesting diminishing returns
with further increases in the number of islands.

Metrics calculation

For calculating adversarial accuracy we used method based
on Mixed Integer Linear Programming which calculate ex-
act value of adversarial accuracy for decision trees.

However, calculating the exact value minimax regret is
not straightforward. It requires finding a perturbation that
maximizes regret from the infinite set of possible perturba-
tions. Since this task is not trivial, we decided to estimate
the real values of this metric by drawing a uniformly ran-
dom subset P of possible perturbations and then calculating
the performance of all models on this subset.

In order to assess how large this subset should be to
fairly estimate the performance of models, we chose 5
datasets with different ε values and ran each tested method
on each dataset 5 times. This resulted in 25 decision trees.
We then checked the following values for the size of P :
102, 103, 104, 105, 106, 107. For each value of P , we drew
a given number of random perturbations and then evaluated
all 25 decision trees using minimax regret and adversarial
accuracy. The results for all models were then averaged. This
procedure was repeated 20 times (each time a new subset of
perturbations was drawn, but the 25 models remained the
same) for each value of P. The mean value and standard er-
ror for the tested values of P are presented in Table 12. It
shows that the standard error value decreases with the size
of P . This is expected, as a larger subset of perturbations al-
lows for a more thorough search of the space of possible per-
turbations and indicates that the results are becoming more
reliable.



adversarial accuracy max regret
dataset ring cycle star clique ring cycle star clique
ionos 0.799 0.798 0.797 0.790 0.044 0.046 0.047 0.049
breast 0.900 0.899 0.894 0.882 0.034 0.034 0.034 0.035
diabetes 0.647 0.643 0.647 0.638 0.026 0.027 0.027 0.028
bank 0.673 0.670 0.667 0.664 0.046 0.047 0.048 0.051
Japan3v4 0.688 0.684 0.687 0.679 0.025 0.026 0.027 0.027
spam 0.766 0.765 0.760 0.754 0.044 0.044 0.044 0.045
GesDvP 0.752 0.749 0.747 0.741 0.073 0.074 0.076 0.077
har1v2 0.854 0.846 0.851 0.839 0.019 0.019 0.020 0.020
wine 0.708 0.703 0.704 0.694 0.063 0.065 0.066 0.067
collision-detection 0.822 0.818 0.822 0.812 0.030 0.031 0.032 0.032
mnist-1-5 0.975 0.973 0.968 0.959 0.044 0.045 0.045 0.045
mnist-2-6 0.925 0.918 0.922 0.915 0.045 0.045 0.046 0.047
mnist 0.764 0.760 0.763 0.752 0.061 0.063 0.065 0.067
F-mnist2v5 0.995 0.991 0.990 0.982 0.156 0.158 0.164 0.174
F-mnist3v4 0.884 0.877 0.883 0.870 0.135 0.135 0.138 0.139
F-mnist7v9 0.881 0.880 0.877 0.866 0.144 0.146 0.147 0.155
F-mnist 0.560 0.557 0.560 0.549 0.110 0.113 0.115 0.119
cifar10:0v5 0.702 0.699 0.702 0.689 0.130 0.135 0.138 0.145
cifar10:0v6 0.704 0.703 0.701 0.694 0.198 0.202 0.204 0.210
cifar10:4v8 0.675 0.670 0.674 0.664 0.205 0.211 0.215 0.225
AVERAGE 0.784 0.780 0.781 0.772 0.082 0.083 0.085 0.088

Table 5: Averaged adversarial accuracy and max regret for various migration topologies.

minimax regret
log10|P | average std error

2 0.0954 0.0062
3 0.0963 0.0051
4 0.0970 0.0023
5 0.0972 0.0004
6 0.0973 0.0002
7 0.0973 0.0001

Table 12: Mean value and standard error of minimax regret
for different values of the size of random perturbations sam-
ple used to their calculation.

The standard error for small values (log10 |P | ≤ 4) is
high, which shows that the calculated metrics values are un-
reliable. However, for P sizes of at least 105, the difference
between multiple perturbations drawn is small and the re-
sults are stabilized. This does not indicate how close to the
exact (real) values we are, but it does show that 105 is a large
enough size of drawn perturbations sample to fairly assess
and compare tested models.

Diversity analysis
Table 13 presents detailed results for diversity analysis de-
scribed in the main paper.

Standard deviations
To ensure clarity and due to space constraints, we present
the standard deviations of the results discussed in the main
paper in separate tables. Tables 14 and 15 show results for

decision forests while Tables 16 and 17 the corresponding
provide results for individual decision trees.

The standard deviations for ICoEvoRDF don’t signifi-
cantly differ than those of other methods. This suggests that
ICoEvoRDF produces consistent and stable results across
different runs or evaluations. The standard deviations for
single decision trees are notably higher than those for en-
semble forests. This is expected, as ensembles tend to re-
duce variance and improve robustness compared to indi-
vidual models. Results vary across datasets, indicating that
some datasets are inherently more challenging or exhibit
greater variability in performance, regardless of the method
used.



number of islands
5 10 15 20 25 30 35 40 45 50 AVG

D
T

po
pu

la
tio

n
si

ze
50 0.604 0.609 0.613 0.616 0.614 0.622 0.622 0.622 0.622 0.622 0.617
100 0.628 0.628 0.638 0.639 0.639 0.644 0.644 0.644 0.644 0.644 0.639
150 0.636 0.640 0.644 0.648 0.650 0.652 0.652 0.652 0.652 0.652 0.648
200 0.637 0.645 0.645 0.649 0.651 0.653 0.653 0.653 0.653 0.654 0.649
250 0.637 0.646 0.647 0.648 0.652 0.654 0.654 0.654 0.654 0.654 0.650
300 0.638 0.646 0.647 0.649 0.653 0.655 0.655 0.655 0.655 0.656 0.651
350 0.638 0.646 0.648 0.649 0.653 0.655 0.655 0.656 0.656 0.656 0.651
400 0.639 0.646 0.648 0.650 0.653 0.655 0.655 0.655 0.656 0.656 0.651
450 0.639 0.646 0.648 0.650 0.654 0.655 0.655 0.655 0.656 0.656 0.651
500 0.639 0.646 0.648 0.650 0.654 0.655 0.656 0.656 0.656 0.656 0.651

AVG 0.634 0.640 0.643 0.645 0.647 0.650 0.650 0.650 0.650 0.651

Table 6: Averaged adversarial accuracy for number of islands (columns) and DT populations size (rows) for diabetes dataset.

number of islands
5 10 15 20 25 30 35 40 45 50 AVG

D
T

po
pu

la
tio

n
si

ze

50 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028
100 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027
150 0.027 0.027 0.027 0.027 0.026 0.026 0.026 0.026 0.026 0.026 0.027
200 0.027 0.027 0.027 0.027 0.026 0.026 0.026 0.026 0.026 0.026 0.027
250 0.027 0.027 0.027 0.027 0.026 0.026 0.026 0.026 0.026 0.026 0.026
300 0.027 0.027 0.027 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026
350 0.027 0.027 0.027 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026
400 0.027 0.027 0.027 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026
450 0.027 0.027 0.027 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026
500 0.027 0.027 0.027 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026

AVG 0.027 0.027 0.027 0.027 0.027 0.026 0.026 0.026 0.026 0.026

Table 7: Averaged max regret for number of islands (columns) and DT populations size (rows) for diabetes dataset.

number of islands
5 10 15 20 25 30 35 40 45 50 AVG

D
T

po
pu

la
tio

n
si

ze

50 5 10 15 19 24 28 34 39 44 48 27
100 10 18 29 38 46 54 64 75 82 98 51
150 14 27 44 59 72 83 104 115 126 138 78
200 19 37 55 77 99 120 131 151 175 194 106
250 24 48 73 95 122 143 174 192 207 240 132
300 29 60 83 109 136 176 197 227 255 289 156
350 32 68 100 135 167 203 224 265 297 347 184
400 38 79 109 146 194 223 271 310 345 393 211
450 42 86 128 176 204 263 298 331 378 425 233
500 47 93 148 195 227 277 333 376 409 490 259

AVG 26 53 78 105 129 157 183 208 232 266

Table 8: Averaged computation time (in seconds) for number of islands (columns) and DT populations size (rows) for diabetes
dataset.



number of islands
5 10 15 20 25 30 35 40 45 50 AVG

D
T

po
pu

la
tio

n
si

ze
50 0.660 0.663 0.666 0.664 0.670 0.668 0.666 0.666 0.667 0.667 0.666
100 0.681 0.684 0.689 0.685 0.692 0.690 0.693 0.693 0.693 0.693 0.689
150 0.694 0.695 0.698 0.699 0.700 0.702 0.701 0.702 0.702 0.702 0.699
200 0.695 0.697 0.699 0.701 0.702 0.703 0.703 0.704 0.704 0.705 0.701
250 0.696 0.698 0.700 0.701 0.702 0.702 0.705 0.705 0.706 0.706 0.702
300 0.697 0.697 0.700 0.701 0.701 0.703 0.705 0.706 0.706 0.706 0.702
350 0.697 0.697 0.700 0.701 0.702 0.703 0.706 0.706 0.706 0.706 0.702
400 0.698 0.698 0.700 0.702 0.703 0.703 0.706 0.706 0.707 0.707 0.703
450 0.698 0.698 0.700 0.702 0.703 0.704 0.706 0.707 0.707 0.707 0.703
500 0.698 0.698 0.700 0.702 0.703 0.704 0.706 0.707 0.707 0.707 0.703

AVG 0.691 0.692 0.695 0.696 0.698 0.698 0.700 0.700 0.701 0.701

Table 9: Averaged adversarial accuracy for number of islands (columns) and DT populations size (rows) for cifar10:0v5 dataset.

number of islands
5 10 15 20 25 30 35 40 45 50 AVG

D
T

po
pu

la
tio

n
si

ze

50 0.139 0.138 0.138 0.138 0.137 0.137 0.138 0.138 0.138 0.137 0.138
100 0.135 0.134 0.133 0.134 0.133 0.133 0.132 0.132 0.132 0.132 0.133
150 0.132 0.132 0.132 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131
200 0.132 0.132 0.131 0.131 0.131 0.131 0.130 0.130 0.130 0.130 0.131
250 0.132 0.131 0.131 0.131 0.131 0.131 0.130 0.130 0.130 0.130 0.131
300 0.132 0.132 0.131 0.131 0.131 0.131 0.130 0.130 0.130 0.130 0.131
350 0.132 0.132 0.131 0.131 0.131 0.130 0.130 0.130 0.130 0.130 0.131
400 0.131 0.131 0.131 0.131 0.131 0.130 0.130 0.130 0.130 0.130 0.131
450 0.131 0.131 0.131 0.131 0.131 0.130 0.130 0.130 0.130 0.130 0.131
500 0.131 0.131 0.131 0.131 0.131 0.130 0.130 0.130 0.130 0.130 0.130

AVG 0.133 0.133 0.132 0.132 0.132 0.131 0.131 0.131 0.131 0.131

Table 10: Averaged max regret for number of islands (columns) and DT populations size (rows) for cifar10:0v5 dataset.

number of islands
5 10 15 20 25 30 35 40 45 50 AVG

D
T

po
pu

la
tio

n
si

ze

50 208 427 648 856 990 1265 1501 1587 1911 2000 1139
100 395 809 1280 1657 2034 2548 2983 3392 3884 4033 2301
150 608 1191 1927 2573 3178 3669 4191 5037 5318 6395 3409
200 793 1727 2550 3301 4317 4812 6056 6874 7349 8518 4630
250 985 2014 3228 3978 5218 6377 6985 8573 8877 10670 5690
300 1214 2452 3605 5036 6053 7668 8948 10133 10766 12829 6870
350 1380 2952 4369 5789 7090 9106 10489 11991 13646 13937 8075
400 1693 3208 5003 6457 8659 10029 11418 13624 15268 16790 9215
450 1853 3604 5571 7137 9226 10615 12580 14727 17237 18333 10088
500 2149 4003 6448 8293 10197 12500 13814 16045 17910 20545 11190

AVG 1128 2239 3463 4508 5696 6859 7897 9198 10217 11405

Table 11: Averaged computation times (in seconds) for number of islands (columns) and DT populations size (rows) for ci-
far10:0v5 dataset.



external diversity internal diversity

N CoEvoRDT ICoEvoRDFSI ICoEvoRDF
ICoEvoRDF

+ FPRDT N CoEvoRDT ICoEvoRDFSI ICoEvoRDF
ICoEvoRDF

+ FPRDT
dataset avg max avg max avg max avg max avg max avg max avg max avg max
ionos 0.037 0.040 0.038 0.041 0.046 0.050 0.055 0.064 0.119 0.222 0.128 0.25 0.126 0.237 0.127 0.238
breast 0.028 0.033 0.028 0.030 0.035 0.039 0.042 0.049 0.114 0.224 0.117 0.226 0.115 0.227 0.113 0.218
diabetes 0.050 0.056 0.051 0.056 0.062 0.069 0.063 0.077 0.098 0.19 0.101 0.184 0.106 0.191 0.104 0.192
bank 0.026 0.032 0.027 0.028 0.033 0.036 0.042 0.043 0.106 0.208 0.11 0.216 0.107 0.195 0.112 0.202
Japan3v4 0.049 0.058 0.051 0.057 0.061 0.066 0.079 0.082 0.093 0.17 0.099 0.186 0.099 0.188 0.092 0.178
spam 0.036 0.041 0.038 0.044 0.044 0.047 0.052 0.060 0.127 0.24 0.132 0.26 0.128 0.248 0.132 0.241
GesDvP 0.057 0.060 0.054 0.063 0.063 0.072 0.065 0.086 0.103 0.19 0.106 0.194 0.104 0.204 0.102 0.201
har1v2 0.039 0.043 0.039 0.045 0.046 0.048 0.056 0.061 0.109 0.2 0.108 0.199 0.116 0.211 0.116 0.232
wine 0.045 0.053 0.047 0.055 0.055 0.063 0.069 0.078 0.113 0.216 0.113 0.226 0.12 0.227 0.113 0.224
collision-det 0.028 0.033 0.031 0.036 0.036 0.036 0.043 0.045 0.127 0.229 0.13 0.246 0.135 0.246 0.137 0.246
mnist-1-5 0.028 0.031 0.030 0.033 0.036 0.041 0.038 0.050 0.100 0.18 0.105 0.189 0.102 0.186 0.107 0.195
mnist-2-6 0.025 0.028 0.026 0.026 0.032 0.032 0.038 0.044 0.097 0.178 0.103 0.196 0.097 0.184 0.099 0.188
mnist 0.049 0.058 0.052 0.053 0.062 0.070 0.079 0.081 0.102 0.194 0.103 0.2 0.104 0.192 0.104 0.2
F-mnist2v5 0.037 0.042 0.038 0.039 0.048 0.050 0.059 0.067 0.116 0.209 0.118 0.229 0.115 0.228 0.122 0.237
F-mnist3v4 0.043 0.045 0.043 0.047 0.053 0.062 0.066 0.069 0.098 0.185 0.096 0.18 0.097 0.188 0.102 0.19
F-mnist7v9 0.027 0.028 0.028 0.031 0.034 0.035 0.042 0.049 0.110 0.202 0.112 0.213 0.109 0.205 0.111 0.202
F-mnist 0.022 0.022 0.023 0.025 0.028 0.032 0.035 0.041 0.097 0.189 0.1 0.189 0.101 0.201 0.101 0.184
cifar10:0v5 0.039 0.044 0.041 0.045 0.043 0.047 0.045 0.050 0.107 0.196 0.105 0.198 0.114 0.22 0.112 0.221
cifar10:0v6 0.034 0.035 0.036 0.039 0.042 0.048 0.054 0.061 0.093 0.172 0.097 0.188 0.098 0.189 0.093 0.179
cifar10:4v8 0.040 0.047 0.039 0.040 0.045 0.051 0.058 0.069 0.107 0.2 0.11 0.209 0.11 0.208 0.11 0.208
AVERAGE 0.037 0.041 0.038 0.042 0.045 0.050 0.054 0.061 0.107 0.200 0.110 0.211 0.111 0.209 0.109 0.210

Table 13: Diversity analysis in terms of average and maximum diversity.

dataset Random
forests

GROOT
forests

FPRDT
forest

CoEvoRDT
forest

PRAdaBoost
CoEvoRDT

boosting
ICoEvoRDFEV

SI ICoEvoRDFSI ICoEvoRDFEV ICoEvoRDF
ICoEvoRDF

+ FPRDT
ionos 0.0028 0.0058 0.0048 0.0071 0.0080 0.0043 0.0070 0.0056 0.0070 0.0144 0.0130
breast 0.0106 0.0106 0.0099 0.0097 0.0114 0.0097 0.0093 0.0058 0.0122 0.0062 0.0057
diabetes 0.0059 0.0068 0.0067 0.0108 0.0125 0.0054 0.0050 0.0105 0.0135 0.0086 0.0081
bank 0.0061 0.0075 0.0065 0.0081 0.0098 0.0071 0.0109 0.0095 0.0088 0.0105 0.0098
Japan3v4 0.0037 0.0073 0.0060 0.0036 0.0041 0.0062 0.0083 0.0050 0.0112 0.0071 0.0066
spam 0.0000 0.0079 0.0074 0.0028 0.0031 0.0062 0.0103 0.0105 0.0078 0.0101 0.0092
GesDvP 0.0098 0.0072 0.0062 0.0098 0.0111 0.0060 0.0111 0.0083 0.0086 0.0133 0.0129
har1v2 0.0066 0.0069 0.0060 0.0108 0.0118 0.0066 0.0115 0.0076 0.0060 0.0084 0.0078
wine 0.0081 0.0090 0.0087 0.0076 0.0089 0.0091 0.0064 0.0069 0.0143 0.0081 0.0080
collision-det 0.0054 0.0111 0.0094 0.0045 0.0051 0.0079 0.0080 0.0125 0.0136 0.0125 0.0118
mnist-1-5 0.0000 0.0081 0.0072 0.0068 0.0083 0.0073 0.0115 0.0059 0.0103 0.0100 0.0097
mnist-2-6 0.0000 0.0023 0.0021 0.0089 0.0090 0.0019 0.0112 0.0084 0.0097 0.0090 0.0089
mnist 0.0000 0.0072 0.0068 0.0093 0.0108 0.0063 0.0068 0.0120 0.0065 0.0068 0.0066
F-mnist2v5 0.0047 0.0080 0.0077 0.0073 0.0074 0.0083 0.0086 0.0125 0.0079 0.0132 0.0131
F-mnist3v4 0.0023 0.0063 0.0058 0.0112 0.0112 0.0057 0.0128 0.0052 0.0144 0.0093 0.0088
F-mnist7v9 0.0050 0.0078 0.0077 0.0033 0.0035 0.0062 0.0095 0.0083 0.0070 0.0138 0.0127
F-mnist 0.0050 0.0044 0.0043 0.0078 0.0080 0.0036 0.0066 0.0129 0.0089 0.0072 0.0066
cifar10:0v5 0.0094 0.0074 0.0074 0.0094 0.0101 0.0064 0.0123 0.0067 0.0092 0.0128 0.0119
cifar10:0v6 0.0088 0.0030 0.0028 0.0033 0.0039 0.0032 0.0068 0.0072 0.0063 0.0114 0.0109
cifar10:4v8 0.0059 0.0087 0.0073 0.0109 0.0130 0.0080 0.0108 0.0114 0.0065 0.0087 0.0080
AVERAGE 0.0050 0.0072 0.0065 0.0077 0.0085 0.0063 0.0092 0.0086 0.0095 0.0101 0.0095

Table 14: Standard deviations of adversarial accuracies for ensemble forests methods.



dataset Random
forests

GROOT
forests

FPRDT
forest

CoEvoRDT
forest

PRAdaBoost
CoEvoRDT

boosting
ICoEvoRDFEV

SI ICoEvoRDFSI ICoEvoRDFEV ICoEvoRDF
ICoEvoRDF

+ FPRDT
breast 0.0034 0.0034 0.0075 0.0050 0.0061 0.0078 0.0058 0.0019 0.0072 0.0046 0.0042
diabetes 0.0019 0.0030 0.0048 0.0077 0.0071 0.0030 0.0036 0.0036 0.0078 0.0050 0.0037
bank 0.0028 0.0030 0.0047 0.0055 0.0038 0.0039 0.0054 0.0045 0.0061 0.0073 0.0044
Japan3v4 0.0013 0.0038 0.0041 0.0022 0.0016 0.0047 0.0030 0.0024 0.0050 0.0049 0.0037
spam 0.0000 0.0051 0.0050 0.0019 0.0023 0.0024 0.0064 0.0079 0.0045 0.0080 0.0035
GesDvP 0.0067 0.0044 0.0049 0.0059 0.0069 0.0047 0.0070 0.0063 0.0046 0.0104 0.0088
har1v2 0.0032 0.0024 0.0040 0.0044 0.0060 0.0047 0.0035 0.0052 0.0025 0.0044 0.0038
wine 0.0033 0.0047 0.0053 0.0049 0.0030 0.0072 0.0047 0.0024 0.0096 0.0044 0.0054
collision-det 0.0042 0.0044 0.0075 0.0025 0.0016 0.0030 0.0047 0.0046 0.0107 0.0091 0.0039
mnist-1-5 0.0000 0.0058 0.0027 0.0027 0.0035 0.0056 0.0068 0.0032 0.0053 0.0041 0.0077
mnist-2-6 0.0000 0.0009 0.0013 0.0052 0.0062 0.0007 0.0043 0.0053 0.0053 0.0071 0.0052
mnist 0.0000 0.0050 0.0047 0.0070 0.0039 0.0023 0.0044 0.0068 0.0047 0.0050 0.0021
F-mnist2v5 0.0032 0.0030 0.0036 0.0032 0.0030 0.0042 0.0052 0.0081 0.0054 0.0051 0.0043
F-mnist3v4 0.0015 0.0032 0.0032 0.0055 0.0076 0.0021 0.0066 0.0036 0.0045 0.0051 0.0056
F-mnist7v9 0.0030 0.0026 0.0058 0.0022 0.0018 0.0043 0.0038 0.0029 0.0037 0.0048 0.0039
F-mnist 0.0018 0.0021 0.0026 0.0041 0.0059 0.0024 0.0036 0.0087 0.0061 0.0033 0.0049
cifar10:0v5 0.0066 0.0058 0.0038 0.0057 0.0059 0.0038 0.0086 0.0021 0.0032 0.0102 0.0051
cifar10:0v6 0.0042 0.0016 0.0010 0.0013 0.0012 0.0018 0.0021 0.0032 0.0038 0.0083 0.0085
cifar10:4v8 0.0033 0.0044 0.0056 0.0086 0.0042 0.0031 0.0054 0.0036 0.0025 0.0056 0.0047
AVERAGE 0.0016 0.0027 0.0033 0.0031 0.0039 0.0020 0.0072 0.0058 0.0049 0.0052 0.0049

Table 15: Standard deviations of max regret for ensemble forests methods.

dataset CART RIGDT-h GROOT FPRDT CoEvoRDT CoEvoRDT
+ FPRDT N CoEvoRDT ICoEvoRDT ICoEvoRDT

+ FPRDT
ionos 0.0000 0.0151 0.0204 0.0109 0.0172 0.0172 0.0127 0.0104 0.0102
breast 0.0000 0.0114 0.0150 0.0088 0.0131 0.0131 0.0099 0.0080 0.0080
diabetes 0.0000 0.0144 0.0179 0.0150 0.0173 0.0172 0.0131 0.0116 0.0114
bank 0.0000 0.0115 0.0097 0.0111 0.0118 0.0118 0.0087 0.0068 0.0067
Japan3v4 0.0000 0.0108 0.0131 0.0116 0.0112 0.0110 0.0092 0.0070 0.0069
spam 0.0000 0.0097 0.0083 0.0099 0.0095 0.0094 0.0084 0.0065 0.0064
GesDvP 0.0000 0.0104 0.0134 0.0122 0.0133 0.0133 0.0102 0.0074 0.0073
har1v2 0.0000 0.0115 0.0112 0.0147 0.0124 0.0123 0.0102 0.0089 0.0088
wine 0.0000 0.0112 0.0080 0.0138 0.0086 0.0085 0.0075 0.0065 0.0064
collision-det 0.0000 0.0107 0.0109 0.0093 0.0095 0.0093 0.0082 0.0071 0.0070
mnist-1-5 0.0000 0.0171 0.0128 0.0183 0.0123 0.0123 0.0088 0.0079 0.0077
mnist-2-6 0.0000 0.0077 0.0073 0.0092 0.0091 0.0089 0.0066 0.0049 0.0048
mnist 0.0000 0.0091 0.0087 0.0098 0.0090 0.0088 0.0067 0.0055 0.0054
F-mnist2v5 0.0000 0.0126 0.0120 0.0113 0.0112 0.0112 0.0085 0.0061 0.0060
F-mnist3v4 0.0000 0.0114 0.0133 0.0150 0.0114 0.0112 0.0100 0.0078 0.0078
F-mnist7v9 0.0000 0.0189 0.0157 0.0149 0.0172 0.0170 0.0133 0.0101 0.0101
F-mnist 0.0000 0.0144 0.0133 0.0128 0.0125 0.0125 0.0106 0.0083 0.0083
cifar10:0v5 0.0000 0.0192 0.0207 0.0175 0.0178 0.0177 0.0159 0.0141 0.0140
cifar10:0v6 0.0000 0.0076 0.0074 0.0093 0.0089 0.0087 0.0067 0.0057 0.0057
cifar10:4v8 0.0000 0.0121 0.0191 0.0125 0.0170 0.0169 0.0129 0.0113 0.0111
AVERAGE 0.0000 0.0123 0.0129 0.0124 0.0125 0.0124 0.0099 0.0081 0.0080

Table 16: Standard deviations of adversarial accuracy for single decision trees. The best results are bolded.



dataset CART RIGDT-h GROOT FPRDT CoEvoRDT CoEvoRDT
+ FPRDT N CoEvoRDT ICoEvoRDT ICoEvoRDT

+ FPRDT
ionos 0.0000 0.0090 0.0097 0.0037 0.0117 0.0104 0.0066 0.0043 0.0039
breast 0.0000 0.0036 0.0067 0.0069 0.0083 0.0060 0.0066 0.0042 0.0047
diabetes 0.0000 0.0060 0.0068 0.0113 0.0068 0.0115 0.0053 0.0091 0.0086
bank 0.0000 0.0092 0.0060 0.0088 0.0070 0.0070 0.0049 0.0051 0.0040
Japan3v4 0.0000 0.0080 0.0083 0.0069 0.0054 0.0059 0.0048 0.0034 0.0023
spam 0.0000 0.0057 0.0039 0.0060 0.0073 0.0054 0.0026 0.0039 0.0029
GesDvP 0.0000 0.0065 0.0056 0.0079 0.0106 0.0096 0.0057 0.0049 0.0027
har1v2 0.0000 0.0067 0.0059 0.0055 0.0049 0.0093 0.0054 0.0062 0.0064
wine 0.0000 0.0060 0.0040 0.0065 0.0042 0.0035 0.0053 0.0029 0.0045
collision-det 0.0000 0.0039 0.0039 0.0073 0.0031 0.0052 0.0025 0.0046 0.0045
mnist-1-5 0.0000 0.0124 0.0061 0.0119 0.0065 0.0078 0.0040 0.0033 0.0047
mnist-2-6 0.0000 0.0034 0.0033 0.0047 0.0041 0.0040 0.0039 0.0031 0.0034
mnist 0.0000 0.0040 0.0055 0.0047 0.0059 0.0046 0.0047 0.0029 0.0041
F-mnist2v5 0.0000 0.0086 0.0060 0.0085 0.0064 0.0081 0.0051 0.0036 0.0019
F-mnist3v4 0.0000 0.0065 0.0096 0.0061 0.0066 0.0088 0.0039 0.0058 0.0061
F-mnist7v9 0.0000 0.0116 0.0116 0.0114 0.0055 0.0125 0.0080 0.0032 0.0054
F-mnist 0.0000 0.0066 0.0069 0.0067 0.0048 0.0046 0.0067 0.0038 0.0050
cifar10:0v5 0.0000 0.0076 0.0129 0.0102 0.0091 0.0102 0.0080 0.0079 0.0094
cifar10:0v6 0.0000 0.0027 0.0039 0.0053 0.0038 0.0026 0.0048 0.0038 0.0029
cifar10:4v8 0.0000 0.0047 0.0087 0.0073 0.0124 0.0107 0.0076 0.0081 0.0087
AVERAGE 0.0000 0.0066 0.0068 0.0074 0.0067 0.0074 0.0053 0.0047 0.0048

Table 17: Standard deviations of max regret for single decision trees. The best results are bolded.
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