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Overview

Objective: Develop robust machine learning models, par-
ticularly focusing on decision trees and decision forests.
Algorithm: ICoEvoRDF - island-based coevolutionary
algorithm for constructing robust decision tree ensembles.

Problem definition

The adversarial accuracy of a model h is accuracy on the pertur-
bation in the perturbation set that produces the lowest accuracy.

accadv(h, ϵ) = 1
|X|

∑
xi∈X

min
zi∈Nε(xi)

I [h(zi) = yi].

The max regret of a model h is the maximum regret among all
possible perturbations z ∈ Nε. Regret is the difference between the
best accuracy possible on a particular perturbation and the accuracy
h achieves:

regret(h, {zi}) = max
h′

acc(h′, {zi}) − acc(h, {zi}),

where acc(h, {zi}) is the accuracy achieved by h when {xi} is replaced
with {zi}. Max regret be expressed as:

mr(h) = max
zi∈Nε(xi)

regret(h, {zi}).

The problem is finding a decision model trained on X that for
a given ε optimizes a given robustness metric.

Example

ICoEvoRDF

ICoEvoRDF algorithm leverages island-based coevolution, migration, and game-theoretic prin-
ciples to enhance the robustness and performance of decision forests.
Algorithm workflow

Each island contains two coevolving populations: Decision Tree (DT) and Perturbation Population. Coevolution alternates
between the DT and perturbation populations.

Main results

dataset Random
forests

GROOT
forests

FPRDT
forest

CoEvoRDT
forest PRAdaBoost CoEvoRDT

boosting ICoEvoRDFEV
SI ICoEvoRDFSI ICoEvoRDFEV ICoEvoRDF ICoEvoRDF

+ FPRDT
ionos 0.112 0.787 0.791 0.793 0.796 0.798 0.797 0.796 0.796 0.799 0.801
breast 0.217 0.884 0.873 0.885 0.879 0.899 0.891 0.894 0.896 0.900 0.900
diabetes 0.452 0.648 0.649 0.621 0.654 0.644 0.625 0.636 0.646 0.647 0.651
bank 0.509 0.641 0.658 0.661 0.668 0.669 0.667 0.670 0.664 0.673 0.672
Japan3v4 0.519 0.658 0.669 0.679 0.682 0.684 0.684 0.688 0.684 0.688 0.690
spam 0.000 0.750 0.749 0.751 0.754 0.763 0.756 0.756 0.762 0.766 0.766
GesDvP 0.189 0.731 0.725 0.740 0.732 0.753 0.745 0.745 0.749 0.752 0.754
har1v2 0.233 0.792 0.828 0.844 0.860 0.851 0.855 0.858 0.847 0.854 0.860
wine 0.091 0.633 0.681 0.688 0.690 0.708 0.691 0.691 0.707 0.708 0.708
collision-det 0.325 0.726 0.791 0.804 0.800 0.820 0.810 0.812 0.815 0.822 0.822
mnist-1-5 0.000 0.925 0.964 0.964 0.969 0.975 0.969 0.972 0.968 0.976 0.976
mnist-2-6 0.000 0.823 0.919 0.917 0.924 0.925 0.923 0.925 0.922 0.926 0.926
mnist 0.000 0.632 0.750 0.747 0.761 0.763 0.755 0.759 0.759 0.764 0.764
F-mnist2v5 0.456 0.979 0.974 0.982 0.982 0.993 0.990 0.994 0.987 0.995 0.996
F-mnist3v4 0.044 0.839 0.861 0.869 0.867 0.879 0.877 0.877 0.877 0.884 0.884
F-mnist7v9 0.136 0.836 0.875 0.868 0.879 0.877 0.877 0.880 0.873 0.881 0.880
F-mnist 0.024 0.241 0.537 0.545 0.546 0.559 0.552 0.553 0.554 0.560 0.561
cifar10:0v5 0.302 0.526 0.683 0.690 0.691 0.699 0.694 0.696 0.697 0.702 0.703
cifar10:0v6 0.368 0.560 0.688 0.696 0.696 0.703 0.701 0.701 0.701 0.704 0.705
cifar10:4v8 0.296 0.498 0.665 0.665 0.671 0.671 0.674 0.674 0.673 0.675 0.675
AVERAGE 0.214 0.705 0.767 0.771 0.775 0.782 0.777 0.779 0.779 0.784 0.785

Table 1. Averaged adversarial accuracies for ensemble forests methods. The best results are bolded.

Results on 20 datasets demonstrate the effectiveness of ICoEvoRDF in optimizing both adversarial accuracy and minimax regret metrics.
Algorithm consistently outperforms state-of-the-art methods, showcasing ability to generate highly robust decision trees and forests.
Use of island-based coevolution and game-theoretic weighting strategies proved particularly advantageous, improving diversity and
leading to more robust decision tree ensembles.

Algorithm details

Initialization: Unique training sets assigned to each
island sampled with replacement from dataset.

Evolutionary operators: mutation, crossover, selection.

Evaluation: Each population is evaluated against individu-
als from the opposing population.

Migration: Introduces genetic diversity by sharing solu-
tions between neighboring islands based on an island topol-
ogy (e.g. ring topology).

Decision Forest Composition: The final decision forest
is constructed using the fittest DTs from all islands with
weighted voting:
Equal voting (EV): the same contribution from each is-
land representative (basic approach).
Nash-Based Voting (NV): Frame the scenario as a two-
player game: DT player chooses strategies from the fittest
DTs, perturbation player chooses strategies from perturba-
tions. Use mixed Nash equilibrium probabilities as
voting weights.

Conclusions

Independently evolving populations of decision
trees and perturbations, with periodic migration
of top-performing individuals between islands.
ICoEvoRDT fosters diversity and promotes the
exploration of a wider range of potential
solutions.
Synergy between coevolutionary methods and
game theory (Nash equilibrium based voting).
Trade-off between model interpretability and
robustness - ICoEvoRDF can produce more robust
ensemble models or easier to interpret single DTs.
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