Cultivating Archipelago of Forests: Evolving Robust Decision Trees through Island Coevolution

Adam Żychowski¹ Andrew Perrault² Jacek Mańdziuk^{1,3}

¹Faculty of Mathematics and Information Science, Warsaw University of Technology ²Department of Computer Science and Engineering, The Ohio State University

Overview

Objective: Develop **robust** machine learning models, particularly focusing on decision trees and decision forests.

Algorithm: *ICoEvoRDF* - **island-based coevolutionary** algorithm for constructing robust decision tree ensembles.

Problem definition

The **adversarial accuracy** of a model h is accuracy on the perturbation in the perturbation set that produces the lowest accuracy.

$$\operatorname{acc}_{\operatorname{adv}}(h,\epsilon) = \frac{1}{|X|} \sum_{x_i \in X} \min_{z_i \in \mathcal{N}_{\varepsilon}(x_i)} I[h(z_i) = y_i].$$

The **max regret** of a model h is the maximum *regret* among all possible perturbations $z \in \mathcal{N}_{\varepsilon}$. Regret is the difference between the best accuracy possible on a particular perturbation and the accuracy *h* achieves:

$$\operatorname{regret}(h, \{z_i\}) = \max_{n} \operatorname{acc}(h', \{z_i\}) - \operatorname{acc}(h, \{z_i\}),$$

where $acc(h, \{z_i\})$ is the accuracy achieved by h when $\{x_i\}$ is replaced with $\{z_i\}$. Max regret be expressed as:

$$\operatorname{mr}(h) = \max_{z_i \in \mathcal{N}_{c}(x_i)} \operatorname{regret}(h, \{z_i\}).$$

The problem is finding a decision model trained on X that for a given ε optimizes a given robustness metric.

Algorithm workflow

between the DT and perturbation populations.

dataset	Random	GROOT	FPRDT	CoEvoRDT	PRAdaBoost	CoEvoRDT			$ICoEvoRDF^{EV}$	ICoEvoRDF	ICoEvoRDF
	forests	forests	forest	forest		boosting					+ FPRDT
ionos	0.112	0.787	0.791	0.793	0.796	0.798	0.797	0.796	0.796	0.799	0.801
breast	0.217	0.884	0.873	0.885	0.879	0.899	0.891	0.894	0.896	0.900	0.900
diabetes	0.452	0.648	0.649	0.621	0.654	0.644	0.625	0.636	0.646	0.647	0.651
bank	0.509	0.641	0.658	0.661	0.668	0.669	0.667	0.670	0.664	0.673	0.672
Japan3v4	0.519	0.658	0.669	0.679	0.682	0.684	0.684	0.688	0.684	0.688	0.690
spam	0.000	0.750	0.749	0.751	0.754	0.763	0.756	0.756	0.762	0.766	0.766
GesDvP	0.189	0.731	0.725	0.740	0.732	0.753	0.745	0.745	0.749	0.752	0.754
har1v2	0.233	0.792	0.828	0.844	0.860	0.851	0.855	0.858	0.847	0.854	0.860
wine	0.091	0.633	0.681	0.688	0.690	0.708	0.691	0.691	0.707	0.708	0.708
collision-det	0.325	0.726	0.791	0.804	0.800	0.820	0.810	0.812	0.815	0.822	0.822
mnist-1-5	0.000	0.925	0.964	0.964	0.969	0.975	0.969	0.972	0.968	0.976	0.976
mnist-2-6	0.000	0.823	0.919	0.917	0.924	0.925	0.923	0.925	0.922	0.926	0.926
mnist	0.000	0.632	0.750	0.747	0.761	0.763	0.755	0.759	0.759	0.764	0.764
F-mnist2v5	0.456	0.979	0.974	0.982	0.982	0.993	0.990	0.994	0.987	0.995	0.996
F-mnist3v4	0.044	0.839	0.861	0.869	0.867	0.879	0.877	0.877	0.877	0.884	0.884
F-mnist7v9	0.136	0.836	0.875	0.868	0.879	0.877	0.877	0.880	0.873	0.881	0.880
F-mnist	0.024	0.241	0.537	0.545	0.546	0.559	0.552	0.553	0.554	0.560	0.561
cifar10:0v5	0.302	0.526	0.683	0.690	0.691	0.699	0.694	0.696	0.697	0.702	0.703
cifar10:0v6	0.368	0.560	0.688	0.696	0.696	0.703	0.701	0.701	0.701	0.704	0.705
cifar10:4v8	0.296	0.498	0.665	0.665	0.671	0.671	0.674	0.674	0.673	0.675	0.675
AVERAGE	0.214	0.705	0.767	0.771	0.775	0.782	0.777	0.779	0.779	0.784	0.785

Table 1. Averaged adversarial accuracies for ensemble forests methods. The best results are bolded.

Results on **20 datasets** demonstrate the effectiveness of ICoEvoRDF in optimizing both adversarial accuracy and minimax regret metrics. Algorithm consistently outperforms state-of-the-art methods, showcasing ability to generate highly robust decision trees and forests. Use of island-based coevolution and game-theoretic weighting strategies proved particularly advantageous, **improving diversity** and leading to more robust decision tree ensembles.

Example

³Faculty of Computer Science, AGH University of Krakow

ICoEvoRDF

ICoEvoRDF algorithm leverages island-based coevolution, migration, and game-theoretic principles to enhance the robustness and performance of decision forests.

Each island contains two coevolving populations: Decision Tree (DT) and Perturbation Population. Coevolution alternates

Main results

Algorithm details

- Initialization: Unique training sets assigned to each **island** sampled with replacement from dataset.
- **Evolutionary operators:** mutation, crossover, selection.
- **Evaluation:** Each population is evaluated against individuals from the opposing population.
- Migration: Introduces genetic diversity by sharing solutions between neighboring islands based on an island topology (e.g. ring topology)
- **Decision Forest Composition:** The final decision forest is constructed using **the fittest DTs from all islands** with weighted voting:
- **Equal voting (EV)**: the same contribution from each island representative (basic approach).
- Nash-Based Voting (NV): Frame the scenario as a twoplayer game: DT player chooses strategies from the fittest DTs, perturbation player chooses strategies from perturbations. Use mixed Nash equilibrium probabilities as voting weights.

Conclusions

- Independently evolving populations of decision trees and perturbations, with periodic migration of top-performing individuals between islands.
- ICoEvoRDT fosters diversity and promotes the exploration of a wider range of potential solutions.
- Synergy between coevolutionary methods and **game theory** (Nash equilibrium based voting).
- Trade-off between model interpretability and **robustness** - ICoEvoRDF can produce more robust ensemble models or easier to interpret single DTs.

