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Abstract CoEvolutionary method for Robust Decision Trees (CoEvoRDT) Main results
Objective: Develop robust machine learning models, particularly focusing on decision trees. Overview dataset CART | Meta Silvae | RIGDT-h | GROOT | FPRDT | CoEvoRDT | CoEvoRDT-+FPRDT
Algorithm: CoEvoRDT - coevolutionary algorithm designed for creating robust decision trees capable of CoEvoRDT maintains two populations: one contains encoded decision trees, and the other contains input ionos 094+.000 | .075+.007 | .071+.006 | .061+.005 | .061+.006 | HO52==004 -052:£.005
handli v high-di . | data | d N texts. CoEvoRDT alt tel | ti dat turbati Both lati initialized with d | t d then d | d alt telv. First breast .103+.000 | .056+.006 | .069+.006 | .0594.005 | .057+.005 | .049+.004 .049+.005
andling noisy high-dimensional data in adversarial contexts. CoEvo alternately evolves competing popu- ata perturbations. Both populations are initialized with random elements and then developed alternately. First, diabetes 500+ 000 | 126008 | 1324009 | 124+ 009 | 1174007 | .096-.006 0944007
lations of decision trees and perturbed features, facilitating the construction of decision trees with desired the decision tree population is modified by evolutionary operators (crossover, mutation, and selection) through given bank 1864000 | .102-.007 | .108+.008 | .090+.006 | 089+.007 | .076--.006 076-.006
properties. number of generations. Then, the perturbation population is evolved through the same number of generations. The Japan3v4 | .1074.000 | .0904.006 | .0834.006 | .067+.006 | .066+.004 | .062+.006 .061+.006
o o o | | above loop is repeated until the stop condition is satisfied. spam 097+£.000 | .079:£.006 | .083+.006 | .074.006 | .074-£.006 | .070-+.005 069-£.005
= Game Theory Inspiration: utilizes mixed Nash equilibrium to enhance convergence during the coevolution GesDvP 1524.000 | .129+.008 | .133+.010 | .129+.008 | .131+.009 | .114+.007 1144007
0CEss . harlv2 .105+.000 | .074+.006 | .0844.007 | .0684.006 | .068+.006 | .064+.005 .064+.005
P ' Algorithm workflow wine 1404.000 | .1254.008 | .127+.009 | .111+.009 | .109+.008 | .090-+.006 090+.007
= Potential to improve results of other state-of-the-art methods by incorporating their outcomes collision-det | .142+.000 | .0994.007 | .0934.007 | .0884-.006 | .0914-.007 | .061+.006 .059-+.006
(decision trees they produce) into the initial population and optimizing them through coevolution. mnist:1v5 | .249+.000 | .078+.007 | .076+.006 | .0714.006 | .067+.005 | .055+.006 .055+.005
. : _ mnist:2v6 .268+.000 | .083+.007 | .087+.006 | .0724.005 | .069+.005 | .055+.004 .054+.004
" Tested on 20 popular datasets, demonstrating superior performance compared to 4 state-of-the-art . o Populations _ mnist 305+.000 | .143+.009 | .139+.009 | .125+.007 | .124-+.009 | .113+.008 112:+.008
algorithms. Decision trees | initialization | Perturbations f-mnist2v5 | .2734+.000 | .254+.015 | .2494.015 | .2234+.013 | .238+.014 | .196+.011 .196+.011
= Easily adaptable to various target metrics: allowing the use of tailored robustness criteria such as s - N | - N i‘m"fstg"g 'gggi'ggg 'gggi'gii ggiigig 'gggi'gij 'gigi'gii gggig}; ;g?i'gg
.. -MnISt/vV . . . . . . . . . . 5 o . .
minimax regret. > Crossover ! > Crossover < f-mnist 427+.000 | .345+.020 | .337+.018 | .292+.017 | .286+.016 | .238+.014 237+.015
= Adversarial Accuracy: outperformed all competing methods on 13 datasets with adversarial accuracy metrics. cifarl0:0v5 | .4194.000 | .351+.019 | .379+.021 | .3474.019 | .314+.018 | .2414.015 2364.013
- Minimax Regret: achieved superior performance on all 20 considered datasets with minimax reeret as the y -— > Decision trees ——— L] cifarl0:0v6 | .403+.000 | .3624+.021 | .3684.020 | .342+.018 | .341+.019 | .289+.016 .289+.016
_ gret: perior p 8 Mutat | population Mutat Cifar10:4v8 | .408+.000 | .357+.019 | .360-.021 | .339+.018 | .3314.019 | .283+.016 2814.017
evaluation metric. utation ' HoE | —— ﬁ utation
7 : j | 7 Table 1. Max regrets (mean =+ std error). CoEvoRDT+FPRDT obtained the best results for all datasets. The
- - - | : best results are bolded. Gray background indicates that a given method is statistically significantly better than
Problem definition Decision trees | | . Perturbations |« — Ll _ |  Perturbations Il oth hod L 2 & y sl Y
population evaluation | T population _]I population evaluation all other methods.
. : : : . | HoF
Let X C R? be a d-dimensional instance space (inputs) and Y be the set of possible classes (outputs). y | | L
_ o _ , _ | N y | Selection s |l Selection dataset CART | Meta Silvae | RIGDT-h | GROOT | FPRDT | CoEvoRDT || CoEvoRDT+FPRDT
A cla.s:t:lcall classification task is to find a function (model) h : X — Y, h(x;) = y;, where y; is true class of x;. — 310000 | 6951039 | 701L.045 | 7831047 | .7954.047 | 791t 044 054 049
Classification performance of model A can be measured by accuracy: I I breast 250+.000 | .797+.047 | .838+.052 | .874+.047 | .876+.055 | .885+.054 .889+.056
1 diabetes .5424-.000 | .5544+.035 | .569+.033 | .623+.043 | .648+.039 .617+.038 .648+.037
acc(h) _ E I[h([ljz) _ yZL R eturn bank .633+.000 | .510+.031 | .4684+.033 | .541+.036 | .658+.040 .6574.043 .663+.037
| .X| Is internal the best Is internal Japan3v4 | 576+.000 | .566-+.035 | .564-.037 | .584+.035 | .667+.039 | .665+.037 668+.037
Ti€X -NO-( generations limit >-YES decision J<YES-C condition YES-( generations limit >NO— zparg - iggiggg gg;iggg gg;iggg ;igigjg ;ggigjg ;2(1)igig ;ii‘igﬁ
N — o : : , - reached? fulfilled? reached? esbv : : : : : : : : : : . . : :
where [|h(z;) = yi] returns 1 if 1 predicts the true class of z;, and 0, otherwise. tree har1v2 2324.000 | .706+.045 | .707-+.047 | .806+.048 | .804+.049 | .818+.054 820,052
Let No(x) = {z : ||z — x||sc < €} be a ball with center x and radius ¢ under the L., metric. The adversarial NO wine 6204000 | 637039 | 474027 | 6374036 | 6744037 | [.688:.046 092+ 047
. . . . ) collision-det | .7434+.000 | .772+.047 | .764+.044 | .784+.052 .792+.051 .798+.053 .803+.049
accuracy of a model h is accuracy on the perturbation in the perturbation set that produces the lowest accuracy. mnist1v5 | 9214000 | 950+ 056 | 957+.054 | 954+ 056 | .966L.058 | 964+ 059 969.L 061
It is formally defined as . mnist:2v6 | .862+.000 | .906+.054 | .919+.050 | .917+.052 | .922+.049 | .917+.053 1922+.051
. . L. . mnist .06734+.000 | .702+.041 | .7044.042 | .743+.048 | .742+.049 .745+.043 _.754:|:.O46
acCadv(h, €) = X Z.?j?x)l[h(zi) = Y Decision Tree Population fmnist2v5 | 6754+.000 | 951+.053 | 9454060 | 971+.057 | .978+.055 | .982+.055 082L.059
zex f-mnist3v4 | .6324.000 | .808+.049 | .7934+.044 | .819+.048 | .8654+.050 | .869+.056 .870+.054
_ _ _ _ _ = Each decision tree is encoded as a list of nodes, where each node is represented by a 7-tuple :'m”fS”Vg 642000 -82‘2‘i-045 -821i-052 .829+.052 -87‘15i-050 -?jigg‘g .880+.047
The max regret of a model h is the maximum regret among all possible perturbations 2 € N.. Regret is the {t,c, P, L, R,0,v,a}: node number (t), class label (c), parent node pointer (P), left and right children pointers mnist 464+.000 | .492+.033 | .525+.033 | .536+.035 | .531+.033 | .544+. 546+.040
difference between the best accuracy possible on a particular perturbation and the accuracy h achieves: I and R indicati | b d d b cifarl0:0v5 | 206000 | .502+.033 | .3471+.026 | 485+.036 | 6784046 | [685.039 :093+.059
(L and R), operator indication (0), value to be tested (v), and attribute (a). cifarl0:0v6 | .5874.000 | .540-+.038 | .477+.029 | 556+.037 | .688+.040 | .692+.046 697+.043
= Initial population: random decision trees with depth between 2 and 10. cifar10:4v8 | .256+.000 | .514+.032 | .488+.033 | .473+£.032 .661+.042 .663+.045 .6644.037

regret(h, {z;}) = max acc(h', {2;}) — acc(h, {z;}),

where acc(h, {z;}) is the accuracy achieved by h when {x;} is replaced with {z;}. Max regret be expressed as:

mr(h) = max regret(h,{z}).
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The problem is finding a decision trained on X that for a given ¢ optimizes a given robustness metric
(maximizes for adversarial accuracy or minimizes for max regret).

Crossover: occurs with a probability, randomly pairing individuals and exchanging entire subtrees between
selected nodes to generate offspring.

Mutation: applied with a probability, introducing random changes through actions like subtree replacement,
node information change, or subtree pruning.

Evaluation procedure: performed against the perturbation population. Metric optimization is computed
against all perturbations from the adversarial population.

Table 2. Adversarial accuracies (mean + std error). CoEvoRDT+FPRDT obtained the best results for all

datasets.

Box

denotes that CoEvoRDT+FPRDT is statistically significantly better than all other methods. The

best results are bolded. Gray background indicates that a given method is statistically significantly better than
all other methods (except CoEvoRDT+FPRDT).

minimax regret adversarial accuracy computation time [s]
. . HoF size Nash mixed Top K as | Nash single Top K | Best Nash mixed Top K as | Nash single Top K | Best Nash mixed Top K as | Nash single Top K | Best
Example Perturbation population L e e
o ] _ _ _ o 10 242 248 247 | 251 | 250 535 535 535 | 534 | 533 50 50 50 50 | 50
= Each individual represents a perturbed input set X, with perturbations constrained within e. 20 240 246 245 | 249 | 256 536 536 536 | 536 | 534 55 54 55 56 | 51
.\ . : : : L 50 241 244 245 | 249 | 254 536 536 53 | 536 534 61 58 59 62 | 54
T1 T2 T3 = Initial population: Random perturbations generated uniformly, meeting € criteria. 100 539 13 13 o Tom3 T 538 38 e TeE T 6 3 o e T t6
. : T - : : : 200 238 242 242 | 244 | 250 543 530 540 | 530 | 535 77 70 76 77 | 59
csl 1o CS I D CS | D Crossover: Selects a random subse’F of individuals, pairs them randomly, and mixes perturbed input instances s = P Cal s s ner = Yo o o s o =
Alsol1ol ol [A1]55 (+5)[10] 0 A1]55 (+5)]20 (+10) [ O from both parents to generate offspring. 0 237 239 240 | 240 | 248 545 540 541 | 540 | 536 86 77 85 85 | 61
A2160 1200 11 |A2]55 (-5) [20] 1 A2|55 (-5)| 20 (+0) | 1 * Mutation: Independently perturbing each input instance’s encoded values. Table 3. Results with respect of HoF size for fashion-mnist dataset. co means that there was no limit on HoF size.
A A > r = Evaluation: Balance perturbation efficiency against all decision trees and avoiding oscillation. N, = 20
A3160[30] 1 3[60 (+0)|30] 1 3[55(-5)]| 20 (-10) || 1 highest-fitness decision trees are used for perturbation evaluation.
DT1 DT2 DT3 Conclusions
> CS > Hall of Fame and Nash Equlibrium i i . . .
CS2 S q = Novel coevolutionary algorithm for robust decision tree construction.
55 /20
Y/ . = Role: Mechanism to retain and store best-performing individuals encoun.tered during evolution. - Adaptable to various target metrics, suitable for diverse applications, including
= Common approach critique: Traditional approach adds one highest-fitness individual per generation, scenarios combining robustness with other obiectives.
g ]

potentially suboptimal for diversity.

[>15

olo

= Introduces a game-theoretic approach for constructing the Hall of Fame using Mixed
Nash Equilibrium, enhancing robustness and convergence speed.

= CoEvoRDT approach: Utilizes a game-theoretic approach treating decision trees and perturbations as
strategies in a non-cooperative zero-sum game.

ol 5%

= Mixed Nash Equilibrium: Calculates mixed Nash equilibrium, resulting in mixed strategies for both decision

_ = Can integrate results from other strong methods into the initial population for
trees and perturbations.

: . . _ _ performance improvement.
= Evaluation enhancement: Fitness function calculated against a merged set of Hall of Fame and population

individuals. = Tested on 20 benchmark datasets, outperforming competitors in minimax regret and

= Size limitation: Hall of Fame size is limited, with the lowest-fitness element determining the limit. achieving on-par performance in adversarial accuracy metrics.

* Future Work: Investigating CoEvoRDT as a multi-population algorithm, exploring the
potential of the island model for faster convergence and enhanced performance.
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