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Abstract

Objective: Develop robust machine learning models, particularly focusing on decision trees.
Algorithm: CoEvoRDT - coevolutionary algorithm designed for creating robust decision trees capable of
handling noisy high-dimensional data in adversarial contexts. CoEvoRDT alternately evolves competing popu-
lations of decision trees and perturbed features, facilitating the construction of decision trees with desired
properties.

Game Theory Inspiration: utilizes mixed Nash equilibrium to enhance convergence during the coevolution
process.
Potential to improve results of other state-of-the-art methods by incorporating their outcomes
(decision trees they produce) into the initial population and optimizing them through coevolution.
Tested on 20 popular datasets, demonstrating superior performance compared to 4 state-of-the-art
algorithms.
Easily adaptable to various target metrics: allowing the use of tailored robustness criteria such as
minimax regret.
Adversarial Accuracy: outperformed all competing methods on 13 datasets with adversarial accuracy metrics.
Minimax Regret: achieved superior performance on all 20 considered datasets with minimax regret as the
evaluation metric.

Problem definition

Let X ⊂ Rd be a d-dimensional instance space (inputs) and Y be the set of possible classes (outputs).
A classical classification task is to find a function (model) h : X → Y , h(xi) = yi, where yi is true class of xi.
Classification performance of model h can be measured by accuracy:

acc(h) = 1
|X|

∑
xi∈X

I [h(xi) = yi],

where I [h(xi) = yi] returns 1 if h predicts the true class of xi, and 0, otherwise.
Let Nε(x) = {z : ||z − x||∞ ≤ ε} be a ball with center x and radius ε under the L∞ metric. The adversarial
accuracy of a model h is accuracy on the perturbation in the perturbation set that produces the lowest accuracy.
It is formally defined as

accadv(h, ϵ) = 1
|X|

∑
xi∈X

min
zi∈Nε(xi)

I [h(zi) = yi].

The max regret of a model h is the maximum regret among all possible perturbations z ∈ Nε. Regret is the
difference between the best accuracy possible on a particular perturbation and the accuracy h achieves:

regret(h, {zi}) = max
h′

acc(h′, {zi}) − acc(h, {zi}),

where acc(h, {zi}) is the accuracy achieved by h when {xi} is replaced with {zi}. Max regret be expressed as:

mr(h) = max
zi∈Nε(xi)

regret(h, {zi}).

The problem is finding a decision trained on X that for a given ε optimizes a given robustness metric
(maximizes for adversarial accuracy or minimizes for max regret).

Example

CoEvolutionary method for Robust Decision Trees (CoEvoRDT)

Overview
CoEvoRDT maintains two populations: one contains encoded decision trees, and the other contains input
data perturbations. Both populations are initialized with random elements and then developed alternately. First,
the decision tree population is modified by evolutionary operators (crossover, mutation, and selection) through given
number of generations. Then, the perturbation population is evolved through the same number of generations. The
above loop is repeated until the stop condition is satisfied.
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Decision Tree Population
Each decision tree is encoded as a list of nodes, where each node is represented by a 7-tuple
{t, c, P, L, R, o, v, a}: node number (t), class label (c), parent node pointer (P ), left and right children pointers
(L and R), operator indication (o), value to be tested (v), and attribute (a).
Initial population: random decision trees with depth between 2 and 10.
Crossover: occurs with a probability, randomly pairing individuals and exchanging entire subtrees between
selected nodes to generate offspring.
Mutation: applied with a probability, introducing random changes through actions like subtree replacement,
node information change, or subtree pruning.
Evaluation procedure: performed against the perturbation population. Metric optimization is computed
against all perturbations from the adversarial population.

Perturbation population
Each individual represents a perturbed input set X , with perturbations constrained within ϵ.
Initial population: Random perturbations generated uniformly, meeting ϵ criteria.
Crossover: Selects a random subset of individuals, pairs them randomly, and mixes perturbed input instances
from both parents to generate offspring.
Mutation: Independently perturbing each input instance’s encoded values.
Evaluation: Balance perturbation efficiency against all decision trees and avoiding oscillation. Ntop = 20
highest-fitness decision trees are used for perturbation evaluation.

Hall of Fame and Nash Equlibrium
Role: Mechanism to retain and store best-performing individuals encountered during evolution.
Common approach critique: Traditional approach adds one highest-fitness individual per generation,
potentially suboptimal for diversity.
CoEvoRDT approach: Utilizes a game-theoretic approach treating decision trees and perturbations as
strategies in a non-cooperative zero-sum game.
Mixed Nash Equilibrium: Calculates mixed Nash equilibrium, resulting in mixed strategies for both decision
trees and perturbations.
Evaluation enhancement: Fitness function calculated against a merged set of Hall of Fame and population
individuals.
Size limitation: Hall of Fame size is limited, with the lowest-fitness element determining the limit.

Main results

dataset CART Meta Silvae RIGDT-h GROOT FPRDT CoEvoRDT CoEvoRDT+FPRDT
ionos .094±.000 .075±.007 .071±.006 .061±.005 .061±.006 .052±.004 .052±.005
breast .103±.000 .056±.006 .069±.006 .059±.005 .057±.005 .049±.004 .049±.005
diabetes .202±.000 .126±.008 .132±.009 .124±.009 .117±.007 .096±.006 .094±.007
bank .186±.000 .102±.007 .108±.008 .090±.006 .089±.007 .076±.006 .076±.006
Japan3v4 .107±.000 .090±.006 .083±.006 .067±.006 .066±.004 .062±.006 .061±.006
spam .097±.000 .079±.006 .083±.006 .074±.006 .074±.006 .070±.005 .069±.005
GesDvP .152±.000 .129±.008 .133±.010 .129±.008 .131±.009 .114±.007 .114±.007
har1v2 .105±.000 .074±.006 .084±.007 .068±.006 .068±.006 .064±.005 .064±.005
wine .140±.000 .125±.008 .127±.009 .111±.009 .109±.008 .090±.006 .090±.007
collision-det .142±.000 .099±.007 .093±.007 .088±.006 .091±.007 .061±.006 .059±.006
mnist:1v5 .249±.000 .078±.007 .076±.006 .071±.006 .067±.005 .055±.006 .055±.005
mnist:2v6 .268±.000 .083±.007 .087±.006 .072±.005 .069±.005 .055±.004 .054±.004
mnist .395±.000 .143±.009 .139±.009 .125±.007 .124±.009 .113±.008 .112±.008
f-mnist2v5 .273±.000 .254±.015 .249±.015 .223±.013 .238±.014 .196±.011 .196±.011
f-mnist3v4 .290±.000 .259±.014 .254±.015 .246±.014 .232±.013 .202±.011 .199±.011
f-mnist7v9 .283±.000 .255±.014 .251±.015 .237±.014 .240±.014 .208±.013 .207±.012
f-mnist .427±.000 .345±.020 .337±.018 .292±.017 .286±.016 .238±.014 .237±.015
cifar10:0v5 .419±.000 .351±.019 .379±.021 .347±.019 .314±.018 .241±.015 .236±.013
cifar10:0v6 .403±.000 .362±.021 .368±.020 .342±.018 .341±.019 .289±.016 .289±.016
cifar10:4v8 .408±.000 .357±.019 .360±.021 .339±.018 .331±.019 .283±.016 .281±.017

Table 1. Max regrets (mean ± std error). CoEvoRDT+FPRDT obtained the best results for all datasets. The
best results are bolded. Gray background indicates that a given method is statistically significantly better than
all other methods.

dataset CART Meta Silvae RIGDT-h GROOT FPRDT CoEvoRDT CoEvoRDT+FPRDT
ionos .310±.000 .695±.039 .701±.045 .783±.047 .795±.047 .791±.044 .795±.049
breast .250±.000 .797±.047 .838±.052 .874±.047 .876±.055 .885±.054 .889±.056
diabetes .542±.000 .554±.035 .569±.033 .623±.043 .648±.039 .617±.038 .648±.037
bank .633±.000 .510±.031 .468±.033 .541±.036 .658±.040 .657±.043 .663±.037
Japan3v4 .576±.000 .566±.035 .564±.037 .584±.035 .667±.039 .665±.037 .668±.037
spam .302±.000 .637±.036 .467±.028 .723±.045 .746±.049 .751±.049 .753±.045
GesDvP .478±.000 .637±.039 .548±.033 .716±.045 .735±.040 .740±.046 .741±.044
har1v2 .232±.000 .706±.045 .707±.047 .806±.048 .804±.049 .818±.054 .820±.052
wine .620±.000 .637±.039 .474±.027 .637±.036 .674±.037 .688±.046 .692±.047
collision-det .743±.000 .772±.047 .764±.044 .784±.052 .792±.051 .798±.053 .803±.049
mnist:1v5 .921±.000 .952±.056 .957±.054 .954±.056 .966±.058 .964±.059 .969±.061
mnist:2v6 .862±.000 .906±.054 .919±.050 .917±.052 .922±.049 .917±.053 .922±.051
mnist .673±.000 .702±.041 .704±.042 .743±.048 .742±.049 .745±.043 .754±.046
f-mnist2v5 .675±.000 .951±.053 .945±.060 .971±.057 .978±.055 .982±.055 .982±.059
f-mnist3v4 .632±.000 .808±.049 .793±.044 .819±.048 .865±.050 .869±.056 .870±.054
f-mnist7v9 .642±.000 .824±.045 .81±.052 .829±.052 .876±.050 .868±.054 .880±.047
f-mnist .464±.000 .492±.033 .525±.033 .536±.035 .531±.033 .544±.036 .546±.040
cifar10:0v5 .296±.000 .502±.033 .347±.026 .485±.036 .678±.046 .685±.039 .693±.039
cifar10:0v6 .587±.000 .540±.038 .477±.029 .556±.037 .688±.040 .692±.046 .697±.043
cifar10:4v8 .256±.000 .514±.032 .488±.033 .473±.032 .661±.042 .663±.045 .664±.037

Table 2. Adversarial accuracies (mean ± std error). CoEvoRDT+FPRDT obtained the best results for all
datasets. Box denotes that CoEvoRDT+FPRDT is statistically significantly better than all other methods. The
best results are bolded. Gray background indicates that a given method is statistically significantly better than
all other methods (except CoEvoRDT+FPRDT).

minimax regret adversarial accuracy computation time [s]

HoF size Nash mixed
tree

Top K as
mixed tree

Nash single
trees Top K Best Nash mixed

tree
Top K as
mixed tree

Nash single
trees Top K Best Nash mixed

tree
Top K as
mixed tree

Nash single
trees Top K Best

0 .261 .261 .261 .261 .261 .533 .533 .533 .533 .533 47 47 47 47 47
10 .242 .248 .247 .251 .259 .535 .535 .535 .534 .533 50 50 50 50 50
20 .240 .246 .245 .249 .256 .536 .536 .536 .536 .534 55 54 55 56 51
50 .241 .244 .245 .249 .254 .536 .536 .536 .536 .534 61 58 59 62 54
100 .239 .243 .243 .247 .253 .538 .538 .537 .537 .535 68 63 66 65 56
200 .238 .242 .242 .244 .250 .543 .539 .540 .539 .535 77 70 76 77 59
500 .237 .241 .241 .243 .248 .545 .540 .540 .540 .536 86 79 91 90 60
∞ .237 .239 .240 .240 .248 .545 .540 .541 .540 .536 86 77 85 85 61

Table 3. Results with respect of HoF size for fashion-mnist dataset. ∞ means that there was no limit on HoF size.

Conclusions

Novel coevolutionary algorithm for robust decision tree construction.
Adaptable to various target metrics, suitable for diverse applications, including
scenarios combining robustness with other objectives.
Introduces a game-theoretic approach for constructing the Hall of Fame using Mixed
Nash Equilibrium, enhancing robustness and convergence speed.
Can integrate results from other strong methods into the initial population for
performance improvement.
Tested on 20 benchmark datasets, outperforming competitors in minimax regret and
achieving on-par performance in adversarial accuracy metrics.
Future Work: Investigating CoEvoRDT as a multi-population algorithm, exploring the
potential of the island model for faster convergence and enhanced performance.

The 38th Annual AAAI Conference on Artificial Intelligence, February 2024, Vancouver adam.zychowski@pw.edu.pl perrault.17@osu.edu jacek.mandziuk@pw.edu.pl

mailto:adam.zychowski@pw.edu.pl
mailto:perrault.17@osu.edu
mailto:jacek.mandziuk@pw.edu.pl

