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A B S T R A C T

Stackelberg Security Games (SSGs) gained recently a lot of attention and popularity due to a bunch of successful
practical applications in the field of security maintenance. SSGs model real-life security scenarios as non-
cooperative games between the security forces (e.g. secret service, police) and the attackers (e.g. terrorists,
military groups). The paper proposes a novel coevolutionary method (CoEvoSG) for solving SSGs that develops
two competing populations of player strategies, in the process inspired by biological evolution, so as to
approximate the Stackelberg Equilibrium (game solution). CoEvoSG is experimentally evaluated on over 800
test instances of three types of games with various characteristics. The results and their detailed analysis
presented in the paper prove the CoEvoSG ability to repetitively find optimal or close to optimal solutions
with time scalability excelling the state-of-the-art methods. Consequently, CoEvoSG is capable of calculating
solutions for games bigger and more complex than ever before. This study extends our previously published
conference paper Żychowski and Mańdziuk (2022).
1. Introduction

One of the main challenges brought by globalization are interna-
tional security issues, such as terrorism, large-scale thefts, cyberattacks,
drugs or weapon smuggling. In recent years, new technologies and
scientifically grounded methods have helped to increase the security
level and to struggle with the above-mentioned crime activities [1,2].
Among them, Stackelberg Security Games (SSGs) is a rapidly develop-
ing research area, related to countering criminal activities, that models
tactical security scenarios in the form of a game between security forces
and organized attackers (e.g. terrorists, criminals, military groups, etc.).

SSGs gained lots of popularity due to a bunch of successful practical
applications [3]. For instance, they were successfully deployed in cy-
bersecurity domain [4,5] and in a wide range of real-world scenarios,
e.g. scheduling the Los Angeles International Airport canine patrols [6],
protecting Boston Harbor by the US Coast Guards [7] or preventing
poaching in the Queen Elizabeth National Park in Uganda [8].

SSG formulation assumes two asymmetrical non-cooperative play-
ers: the Defender and the Attacker. The Defender commits to their
strategy first. Then, the Attacker, knowing the Defender’s commitment,
decides on their own strategy. The above order of strategy-related
decisions favors the Attacker and mimics real-world scenarios in which
the Attacker can deduce the opponent’s strategy (e.g. by observing
patrol schedules) and plan their attack accordingly.

In practice, the Defender chooses a mixed strategy, i.e. a probabil-
ity distribution over all possible pure (i.e. simple and deterministic)
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strategies [9]. The Attacker is aware of this distribution but has no
knowledge about its specific materialization (the sequence of actions
that will actually be played during the strategy realization). The goal of
SSG is to find Stackelberg Equilibrium (SE), i.e. a pair of player strategies
such that changing the strategy by any of the players would lead to
his/her result deterioration.

We consider sequential SSGs which means that each player’s strat-
egy consists of a sequence of actions to be executed (played) in con-
secutive time steps. Finding SE is an NP-hard problem [9], and there-
fore, exact methods have limited applicability. In order to address the
scalability problem we have proposed several heuristics approaches
relying on Monte Carlo Tree Search [10,11] or Evolutionary Algorithms
(EAs) [12–16].

In this paper, we propose and design the coevolutionary algorithm
for solving SSGs (CoEvoSG). The method maintains not only a popula-
tion of the Defender’s strategies (as in EA-based approaches), but also a
population of the Attacker’s strategies. Both populations compete with
each other in the process of coevolution. In effect, a convergence to a
near-optimal solution is much faster than in the case of state-of-the-art
approximate methods we compare with, which allows to solve bigger
and more complex games than ever before.
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1.1. Contribution

The main contribution of this paper is three-fold:

• a novel coevolutionary algorithm (CoEvoSG) for solving Sequen-
tial Stackelberg Security Games, capable of finding optimal or
near-optimal solutions is proposed,

• a comprehensive experimental study proves the efficacy of Co-
EvoSG and its ability to solve games of size and complexity that
are beyond the capability of the state-of-the-art methods,

• an in-depth analysis of the method’s performance and parameter-
ization is presented.

This study extends our previous conference paper [15] mainly in
the 3 following dimensions:

• a novel evaluation method of the Attacker’s population that im-
proves the results presented in [15] is proposed in Section 6,

• experimental results on a new type of Security Games. substan-
tially different from those considered in [15], are presented in
Sections 7 and 5.3,

• a detailed analysis of the method’s performance and the in-
teractions between the competing populations is presented in
Section 8.

. Problem definition

A sequential SSG is played by two players: the Defender (D) and
he Attacker (A). It is composed of 𝑚 time steps (moves). In each time
tep both players simultaneously choose their action to be performed.
pure strategy 𝜎𝑃 of player 𝑃 (𝑃 ∈ {𝐷,𝐴}) is a list of his/her

ctions in consecutive time steps: 𝜎𝑃 = (𝑎1, 𝑎2,… , 𝑎𝑚). Let us denote
y 𝛴𝑃 a set of all possible pure strategies of 𝑃 . Then a probability

distribution 𝜋𝑃 ∈ 𝛱𝑝 over 𝛴𝑃 is the mixed strategy of 𝑃 , where 𝛱𝑝
is the set of all his/her mixed strategies. For any pair of strategies
(𝜋𝐷, 𝜋𝐴), the expected payoffs of the players are defined and denoted
by 𝑈𝐷(𝜋𝐷, 𝜋𝐴) and 𝑈𝐴(𝜋𝐷, 𝜋𝐴), respectively. Stackelberg Equilibrium is
a pair of strategies (𝜋𝐷, 𝜋𝐴) satisfying the following conditions:

𝜋𝐷 = arg max
�̄�𝐷∈𝛱𝐷

𝑈𝐴(�̄�𝐷, 𝐵𝑅(�̄�𝐷)), (1)

𝑅(𝜋𝐷) = arg max
𝜋𝐴∈𝛱𝐴

𝑈𝐴(𝜋𝐷, 𝜋𝐴) (2)

he first equation chooses the best (i.e yielding the highest payoff)
efender’s strategy 𝜋𝐷 under the assumption that the Attacker always

elects the best response strategy (𝐵𝑅(𝜋𝐷)) to the Defender’s committed
strategy.

According to Strong Stackelberg Equilibrium defined in [17], if in
(2) there exists more than one optimal Attacker’s response (with the
same highest Attacker’s payoff), the Attacker selects the one with the
highest corresponding Defender’s payoff, i.e. breaks ties in favor of
the Defender. While this assumption may seem counterintuitive, the
opposite way of breaking ties may lead to situations when equilibrium
does not exist [18]. The above variant of Stackelberg Equilibrium
(i.e. Strong Stackelberg Equilibrium) is considered in this paper, as well
as in the majority of SSG publications.

Both players choose their strategy at the beginning of the game (first
the Defender and then the Attacker) and they cannot change it during
the gameplay. This means that in consecutive steps they follow actions
encoded in the selected strategy irrespective of the opponent’s moves
(they are not aware of the opponent’s current and past actions).

Lemma 1. For each Defender’s mixed strategy, there exists at least one
Attacker’s pure strategy which maximizes their payoff.

The proof of the above lemma can be found in [9]. This property
is commonly utilized by the solution methods proposed in the liter-
ature since it narrows down the Attacker’s response search space to
pure strategies only. Likewise, we have built on this Lemma when
2

developing the CoEvoSG algorithm. d
3. Related work

3.1. Exact methods

Methods of solving sequential SSGs can be divided into two main
groups: exact and approximate. Exact approaches are based on Mixed-
Integer Linear Programming (MILP) [19], which formulates SSG as an
optimization problem with a specific target function and a set of linear
integer constraints that must be fulfilled. MILP programs are usually
computed by specially optimized software engines - solvers.

3.1.1. BC2015
The first notable approach from this group was BC2015 [20] - an

extension of DOBBS algorithm [19] (which was designed to solve a
simpler class of one-step Security Games) to extensive-form games [9].
BC2015 transforms an extensive-form game into its equivalent sequence
form representation which reduces the size of the linear program from
exponential (as in DOBBS) to linear with respect to the game tree size.

3.1.2. C2016
Another popular exact method is C2016 [21]. It also bases on MILP

but instead of directly computing SE, utilizes the Stackelberg Extensive-
Form Correlated Equilibrium (SEFCE). In SEFCE, the Defender can send
signals to the Attacker who has to follow them in their choice of
strategy. C2016 uses a linear program for computing SEFCE and then
modifies it by iteratively restricting the signals the Defender can send
to the Attacker and converging to SE. In the experimental evaluation
presented in [21], it has been proven that C2016 is more time-efficient
than BC2015, therefore we will apply C2016 to calculate the reference
optimal solutions.

3.2. Heuristic approaches

The above-mentioned MILP approaches return exact (optimal) solu-
tions but suffer from exponential computation time and poor memory
scalability, which makes them inefficient for large games. Thus, a group
of approximate approaches have been recently proposed

3.2.1. O2UCT
One of them is O2UCT [10,11] which utilizes an Upper Confidence

Bounds applied to Trees (UCT) algorithm [22], a variant of Monte Carlo
Tree Search method [23].

O2UCT consists in a guided sampling of the Attacker’s strategy space
and optimizing the Defender’s strategy under the assumption that the
sampled Attacker’s strategy is the optimal response. The method scales
visibly better than exact MILP-based solutions and returns close-to-
optimal solutions for variable types of games.

3.2.2. EASG
Another heuristic approach, Evolutionary Algorithm for Security

Games (EASG) [13,24], bases on Evolutionary Algorithms that are
inspired by the process of biological evolution. EASG maintains a
population of potential solutions by iteratively applying evolutionary
operators: mutation, crossover and selection. The method optimizes the
Defender’s payoff by evolving a population of candidate Defender’s
strategies, i.e. each chromosome represents a valid Defender’s mixed
strategy. EASG starts off with a population of chromosomes, each of
them containing one, randomly selected pure Defender’s strategy with
assigned probability of occurrence equal to 1. Then, until the stop
ondition is not fulfilled, the population evolves in consecutive gen-
rations. In each generation, the following four operations are applied:
rossover, mutation, evaluation, and selection.

Crossover combines two individuals randomly selected from a pop-
lation by merging their pure strategies and halving their probabilities.
fterwards, the resultant chromosome is shortened (simplified) by

eleting some of its pure strategies with a chance inversely proportional
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to their probabilities [13]. Mutation changes one of the pure strategies
encoded in the chromosome starting from a randomly selected time
step. New actions are drawn from the set of all feasible actions in a
corresponding game state.

Next, each individual is assigned a fitness value which is the ex-
pected Defender’s payoff. This step requires finding the optimal At-
tacker’s response to the mixed Defender’s strategy encoded in the
chromosome. To this end, EASG iterates over all possible Attacker’s
pure strategies (cf. Lemma 1) and selects the one with the highest
Attacker’s payoff. Due to the potentially large space of the Attacker’s
pure strategies, the evaluation phase is the most time-consuming step
of EASG.

Finally, in the selection phase, individuals with higher Defender’s
payoff are more likely to be selected to the next generation. Selection
is performed by means of a binary tournament which repeatedly selects
two chromosomes and promotes the one with the higher fitness value
with a given probability 𝑝𝑠 > 0.5 and the lower-fitted one with
probability 1−𝑝𝑠. Moreover, a few chromosomes with the highest fitness
function values are unconditionally copied to the next generation in or-
der to preserve the best solutions found so far. The above evolutionary
approach was successfully applied to various types of SSGs, including
games with moving targets [12], anti-poaching games [16] (the so-
called Green SSGs), or games which assume that the Attacker is not
perfectly rational (i.e. his/her decisions can deviate from the optimal
ones in a certain way) [14].

4. Coevolutionary approach

4.1. Motivation

As we mentioned in the previous section, EASG evaluation process
requires iterating over all possible Attacker’s pure strategies (according
to Lemma 1) in order to find the best response strategy (2) and then
calculate the expected Defender’s payoff. This evaluation procedure is
performed thousands of times (for each individual in each generation)
which may be time-infeasible, for larger games. In the extreme case,
the Attacker’s strategy space may be continuous (with infinitely many
strategies) which would render the EASG approach [13] ineffective.

Furthermore, in many SSG instances there exists a relatively small
subset of Attacker’s strategies that actually need to be considered when
looking for the optimal response. Many of the Attacker’s strategies
can either be trivially qualified as weak (e.g. an attack at a well-
protected target with low reward, or a sequence of actions which does
not lead to a target), or there are subsets of similar strategies and
only one representative from each subset needs to be examined in
order to find the best Attacker’s response. However, for more complex
games it is generally difficult to a priori (or within a reasonable time)
recognize such irrelevant strategies or create a generic procedure that
would return the representative subset of the Attacker’s strategies, due
to their high dependence on a game topology (structure) and payoff
distribution.

In order to address the above issue, we propose a novel coevolution-
ary approach which maintains two populations: one composed of the
Defender’s mixed strategies (as in EASG) and the other one consisting of
the Attacker’s pure strategies. Strategies from the Attacker’s population
are used to evaluate the Defender’s strategies. Instead of calculating
the Defender’s payoff against all possible Attacker’s pure strategies,
it is now calculated only versus a subset of the Attacker’s strategies
represented in the Attacker’s population. Both populations compete
with each other, i.e. the Attacker’s population attempts to find the
best possible response to the strategies from the Defender’s population
and vice versa — the Defender’s population tries to evolve the most
effective strategies with respect to the response strategies encoded in
the Attacker’s population. The Attacker’s population is also subject to
3

the evaluation process (like the Defender’s population in EASG).
4.2. System overview

A general overview of the CoEvoSG algorithm is presented in Fig. 1.
CoEvoSG maintains two populations: the first one contains the encoded
Defender’s mixed strategies and the other one consists of the Attacker’s
pure strategies.

Populations are developed alternately, i.e. first, the Attacker’s popu-
lation is modified by evolutionary operators (crossover, mutation, and
selection) through 𝑔𝑝 generations. Then, the Defender’s population is
evolved through the same number of 𝑔𝑝 generations. The above loop is
repeated until the stop condition is satisfied.

All evolutionary operators applied to the Defender’s population are
implemented in the same way as in EASG and briefly described in
Section 3. Additional details can be found in [13]. The novel operators
applied to the Attacker’s population are described below.

4.3. Initialization

The Attacker’s population contains 𝑁𝐴 individuals. Each individual
𝑘 represents a randomly selected pure Attacker’s strategy, encoded as
a list of actions in consecutive time steps: 𝜎𝑘𝐴 = (𝑎𝑘1 , 𝑎

𝑘
2 ,… , 𝑎𝑘𝑚). In each

time step 𝑡 ∈ {1,… , 𝑚} 𝑎𝑘𝑡 is drawn uniformly from all feasible actions
in a given state.

4.4. Crossover

The Attacker’s population contains pure strategies so the approach
similar to crossover in Defender’s population from EASG (which con-
tains mixed strategies) cannot be applied. Each individual from the
Attacker’s population is selected for crossover with probability 𝑝𝑐 .
Selected individuals are paired randomly and for each pair one-point
crossover is performed, i.e. for strategies 𝜎𝑟𝐴 = (𝑎𝑟1, 𝑎

𝑟
2,… , 𝑎𝑟𝑚) and

𝜎𝑠𝐴 = (𝑎𝑠1, 𝑎
𝑠
2,… , 𝑎𝑠𝑚) the following two child individuals are created:

𝜎′𝑟𝐴 = (𝑎𝑟1,… , 𝑎𝑟𝑖 , 𝑎
𝑠
𝑖+1,… , 𝑎𝑠𝑚) and 𝜎′𝑠𝐴 = (𝑎𝑠1,… , 𝑎𝑠𝑖 , 𝑎

𝑟
𝑖+1,… , 𝑎𝑟𝑚), where

𝑎𝑟𝑖 = 𝑎𝑠𝑖 is the first common action (in the same time step) in the parent
strategies. If such an action does not exist, the crossover has no effect.
For example, if an action is to choose a vertex in a game graph the
player moves to, then 𝑎𝑟𝑖 = 𝑎𝑠𝑖 would be the first common vertex on the
paths defined by the parent strategies.

The frequency of situations in which crossover has no effect due
to non-existence of a common action in the same time step in crossed
chromosomes strongly depends on a game characteristics. For bigger
games (with high numbers of possible actions in each state) crossover
may have no effect in the majority of the cases. For this reason, the
crossover probability (𝑝𝑐) is set close to 1.

Please note that crossover combines strategies of two individuals by
swapping parts of their actions and the result of this operation contains
only existing actions (either from the first or the second parent). Thus,
the crossover is unable to create strategies with new (not yet chosen)
actions. The introduction of new actions into the chromosomes is left
to the mutation operation (described below), the main role of which is
to boost the exploration of new areas in the search space.

4.5. Mutation

Each individual is mutated with probability 𝑝𝑚. The mutation opera-
tor, starting from a randomly selected step, modifies all subsequent ac-
tions encoded in a chromosome. Each subsequent action is chosen ran-
domly from all available actions in the current state. The result of muta-
tion of strategy 𝜎𝑟𝐴 = (𝑎𝑟1, 𝑎

𝑟
2,… , 𝑎𝑟𝑚) is 𝜎′𝑟𝐴 = (𝑎𝑟1, 𝑎

𝑟
2,… , 𝑎𝑟𝑖−1, 𝑎

𝑟′
𝑖 , 𝑎

𝑟′
𝑖+1,… ,

𝑎𝑟′𝑚 ), where 𝑖 is the chosen time step.

4.6. Evaluation

The evaluation procedure is a crucial component of the proposed so-

lution. Individuals from the Defender’s population are evaluated against
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Fig. 1. A high-level overview of the CoEvoSG algorithm.
all strategies from the Attacker’s population. For each Defender’s strat-
egy (𝜋𝐷) the outcome (player payoffs) of the gameplays against all
trategies from the Attacker’s population are computed. Then, the
est Attacker’s response is chosen: 𝜎𝑏𝑒𝑠𝑡𝐴 = arg max𝜎𝐴 𝑈𝐴(𝜋𝐷, 𝜎𝐴). Fi-

nally, the expected Defender’s payoff against this Attacker’s response
(𝑈𝐷(𝜋𝐷, 𝜎𝑏𝑒𝑠𝑡𝐴 ) is assigned as the fitness value to the evaluated De-
fender’s strategy 𝜋𝐷. There is a chance that the above fitness value is
not the true expected Defender’s payoff because of the lack of the (over-
all) optimal Attacker’s response in the Attacker’s population. However,
the expected algorithm’s behavior is to evolve such a strategy (optimal
response) in the coevolution process in subsequent generations.

The evaluation of individuals from the Attacker’s population is more
complicated. Usually, there is no single optimal Attacker’s response to
all Defender’s strategies. Depending on a particular Defender’s com-
mitment (Defender’s mixed strategy), the best Attacker’s response may
change. Thus, the Attacker’s strategy fitness is the maximum of At-
tacker’s payoffs against the 𝑁𝑡𝑜𝑝 highest-fitted individuals from the
Defender’s population and 𝑁𝑟𝑎𝑛𝑑𝑜𝑚 random ones. For further discussion
and justification of this evaluation procedure please see Section 8.3.
The value of 𝑁𝑡𝑜𝑝 is established experimentally in the parameters tuning
process, described in Section 6.

4.7. Selection

The selection process decides which individuals from the current
population will be promoted to the next generation. At the beginning,
𝑒 individuals with the highest fitness value are unconditionally trans-
ferred to the next generation. They are called elite and preserve the
best so far solutions. Then, a binary tournament is repeatedly executed
until the next generation population is filled with 𝑁𝐴 individuals. For
each tournament, two individuals are sampled with replacement from
the current population (including those affected by crossover and/or
mutation). The higher-fitted chromosome wins and is promoted to the
next generation with probability 𝑝𝑠, the so-called selection pressure
parameter. Otherwise, the lower-fitted chromosome is promoted.
4

4.8. Stop condition

The algorithm ends when at least one of the following conditions is
satisfied:

(i) CoEvoSG attained the maximum assumed number of generations
– 𝑙𝑔 ,

(ii) no improvement of the best-found solution (Defender’s payoff)
was observed in consecutive 𝑙𝑐 generations.

Only generations referring to the Defender’s population development
are considered when verifying the above conditions.

5. Benchmark games

We have tested CoEvoSG on three popular SSG benchmarks: FlipIt
Games, Warehouse Games, and Search Games. All of them are fre-
quently used for testing state-of-the-art methods, e.g. in [11,13,21,
25].

5.1. Flipit games

FlipIt Games (FIGs) [26] are inspired by cybersecurity scenarios, in
which the Attacker attempts to gain control over some elements of the
network infrastructure (e.g. computers, routers, mobile devices) and
the Defender can take actions to regain control of the infected units.

FIGs are played on directed graphs with 𝑛 vertices, for a fixed
number of 𝑚 time steps. In each time step, players simultaneously select
one vertex which they want to take control of (flip this node). At the
beginning of the game, all vertices are controlled by the Defender and
only a subset of them (entry nodes) is accessible to the Attacker. This
mimics the scenario in which some part of the network infrastructure
is publicly accessible from the outside (e.g. Internet). The Attacker
starts penetrating the network from one of those entry nodes. Taking
control over the vertex (flip action) is successful only if the following
two conditions are fulfilled: (1) the player controls at least one of the
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Fig. 2. Example FIG scenario with two entry nodes (routers) on the left. Numbers
below each component denote a reward for controlling the node (left) and a cost of a
flip attempt (right).

predecessor vertices (unless it is an entry node), and (2) the current
owner of this vertex does not take the flip action on this vertex at the
same time step.

Each node has assigned two values: a reward (> 0) for controlling
this node, and a cost (< 0) of taking a flip attempt. The final player’s
payoff is calculated by summing the rewards in all nodes controlled by
that player across all time steps and the costs of all flip attempts (either
successful or not) during the entire game. Fig. 2 presents a sample FIG
scenario.

In the experiments, 280 FIG instances were generated randomly
with the following parameters: 𝑚 ∈ {3, 4, 5, 6, 8, 10, 15, 20}, 𝑛 ∈
{5, 10, 15, 20, 25, 30, 40}. For each pair (𝑚, 𝑛) 5 games were created
with random payoffs (rewards drawn from (0, 1), costs from (−1, 0))
and random graph structures generated according to Watts–Strogatz
model [27] with an average vertex degree 𝑑𝑎𝑣𝑔 = 3.

The experiments were performed in No-Info variant [28] which
means that the players were not aware if their flip action was success-
ful. Thus, their strategies were independent of the opponent’s actions.

5.2. Warehouse games

Warehouse Games (WHGs) [29] are inspired by the real estate
(warehouses or residential buildings) protection scenarios. The games
are played on undirected graphs with 𝑛 vertices, for 𝑚 time steps. A
subset of special vertices are called targets (𝑇 ). Graph edges represent
corridors, vertices symbolize rooms. At the beginning, the Defender
and the Attacker are placed in the predetermined starting vertices. In
each time step, each player’s action consists in moving to one of the
neighboring vertices (connected with an edge) or staying in the current
vertex.

The game ends in one of the following situations:

(a) both players are located in the same vertex 𝑣 at the same
time step. This means that the Attacker is ‘‘caught’’ and the
players are given payoffs associated with that vertex: 𝑈𝑣

𝐷+ > 0
(Defender) and 𝑈𝑣

𝐴− < 0 (Attacker),
(b) the Attacker reaches one of the targets 𝑡 ∈ 𝑇 and is not caught

(there is no Defender in this target). This means that the attack
is successful and the players receive payoffs 𝑈 𝑡

𝐷− < 0 (Defender)
and 𝑈 𝑡

𝐴+ > 0 (Attacker),
(c) none of the above conditions are met, in which case both players

receive a payoff of 0.

Fig. 3 presents a sample WHG scenario. All WHG instances used in the
experiments can be found in [30].

For CoEvoSG evaluation, 240 WHG instances were generated with
𝑚 ∈ {3, 4, 5, 6, 8, 10, 15, 20} and 𝑛 ∈ {15, 20, 25, 30, 40, 50} (5 games per
each (𝑚, 𝑛) pair). Player payoffs were drawn from [−1; 1] interval. The
5

number of targets depended on a graph size: |𝑇 | =
⌈

𝑛
5

⌉

. Graphs were
generated according to Watts–Strogatz random graphs model [27] with
an average vertex degree 𝑑𝑎𝑣𝑔 = 3.

5.3. Search games

Search Games (SEG), introduced in [20], are played on directed
graphs. The Attacker’s goal is to reach one of the distinguished target
vertices, starting from a fixed initial vertex. Contrary to WHG, in SEG
the Defender has several units and, furthermore, the movement of each
of them is restricted to a specific subset of vertices the unit is allowed
to visit.

Another crucial difference compared to WHG is the property of
partial observability. Namely, the Attacker leaves traces in visited
vertices which can be discovered by a Defender’s unit if it visits the
node after the Attacker’s presence (in one of the subsequent time steps).
However, the Attacker has the ability to erase such a trace if they spend
an additional time step in a given vertex (i.e. stay in this vertex in
two or more consecutive time steps). The end-of-game conditions are
the same as in WHG: either the Defender obtains a positive payoff for
catching the Attacker, or the Attacker is rewarded for reaching a target
vertex without being intercepted, or the game ends with neutral payoffs
after a certain number of time steps.

Leaving/discovering traces and possessing more than one unit by
the Defender clearly distinguish SEG from the previously described
WHG model. Fig. 4 presents an example Search Game with 5 targets, 3
Defender’s units and 32 nodes.

In the evaluation process 300 SEG instances were generated with
𝑚 ∈ {3, 4, 5, 6, 8, 10, 15} and 𝑛 ∈ [15, 50]. The number of targets |𝑇 |
varied from 2 to 6.

Since SEGs introduce partial observability (by means of leaving
traces) the Defender’s pure strategy is no longer in the form of a simple
list of actions/moves in consecutive time steps. It has to be extended
by the Defender’s reaction to discovering the Attacker’s traces. This
extension is described in detail in [13] and also adopted in this paper.

6. Parameterization

All common EASG and CoEvoSG parameters were set according to
the recommendations proposed for EASG [13]. Namely, the Defender’s
population size 𝑁𝐷 = 200, crossover probability 𝑝𝑐 = 0.8, mutation
probability 𝑝𝑚 = 0.5, selection pressure 𝑝𝑠 = 0.9, elite size 𝑒 = 2, maxi-
mal number of generations 𝑙𝑔 = 1000, maximal number of generations
with no improvement 𝑙𝑐 = 20. Parameters of the evolutionary opera-
tors (mutation, crossover, selection) in the Attacker’s population were
assigned the same values as in the Defender’s population. However,
CoEvoSG requires several new parameters which need to be tuned. In
order to find their recommended values, a number of parameter tuning
experiments on 50 random WHG games, different from the WHG test in-
stances, were performed. In order to verify the robustness of CoEvoSG,
there were no additional parameterization on either the FIG or SEG
game instances. All of those games were generated independently of the
benchmark set (described in the previous subsection) used for CoEvoSG
evaluation.

The first tested parameter was the Attacker’s population size (𝑁𝐴).
The following values were considered: {10, 20, 100, 200, 500, 1000, 2000,
5000}. The results (average Defender’s payoff and computation time)
are presented in Fig. 5(a). Clearly, the bigger the Attacker’s population
size the better the results, as the Defender’s payoff is calculated more
accurately. If the Attacker’s population contained all possible Attacker’s
pure strategies, then the Defender’s individuals’ evaluation would be
an exact value (not an approximation) since the optimal Attacker’s re-
sponse would always be present in the Attacker’s population. However,
as stated previously, one of the motivations for introducing coevolution
is to speed up the Defender’s strategies evaluation by checking them
only against a representative subset of all Attacker’s strategies. Thus,
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Fig. 3. Example WHG scenario: warehouse layout (left) and the corresponding graph (right) with payoffs of the players related to the respective game outcomes. Green rectangular
vertices are targets, a red triangle vertex and a blue circle vertex are the Attacker’s and the Defender’s starting point, respectively.
Fig. 4. Example of Search Game topology. A red triangle denotes the Attacker’s
starting vertex, green rectangles are targets. Three rounded groups of vertices represent
restricted subsets of nodes within which each of three Defender’s units can freely move.

based on the presented results, 𝑁𝐴 was set to 200 which equals the
Defender’s population size (𝑁𝐷).

Another tested parameter was the number of consecutive genera-
tions 𝑔𝑝 for each player. Recall that in CoEvoSG the Defender’s and
the Attacker’s populations are evolved alternately in the batches of 𝑔𝑝
generations. The results of tuning 𝑔𝑝 are presented in Fig. 5(b). Small
values (𝑔𝑝 ≤ 5 — frequent switching between populations), as well
as big ones (𝑔𝑝 ≥ 50) result in performance deterioration. Infrequent
switching makes one population dominant — the other one stagnates
over a long time with no chances to respond to the evolved individuals
from the other population. At the same time, for all tested values
the computation time is similar. Hence, 𝑔𝑝 = 20 was adopted as a
recommended value.

The last tuned parameter was 𝑁𝑡𝑜𝑝, i.e. the number of the best
individuals from the Defender’s population involved in the Attacker’s
strategies evaluation. The result for 𝑁𝑡𝑜𝑝 ∈ {1, 3, 5, 10, 20, 50, 100, 200}
presented in Fig. 5(c) confirm our previous conjecture formulated in
Section 4 about the harmfulness of using the whole Defender’s popu-
lation (𝑁𝑡𝑜𝑝 = 200). Also, small values of this parameter (𝑁𝑡𝑜𝑝 < 5)
lead to weaker results, due to the presence of oscillations within the
population. In the extreme case of 𝑁𝑡𝑜𝑝 = 1 (evaluation of a given
Attacker’s strategy is based on the best Defender’s strategy only) we
observed that the Attacker’s population quickly losses diversity. Indi-
viduals in the population become similar to one another because they
are optimized with respect to only one Defender’s strategy. As a result,
the Attacker’s population returns a good response only to this particular
Defender’s strategy, and in the next coevolution phase, the Defender’s
population is able to find with ease another strategy for which there is
6

no good response in the Attacker’s population. Afterwards, the whole
Attacker’s population again adapts to the new best Defender’s strategy
and ‘‘forgets’’ the previous ones. 𝑁𝑡𝑜𝑝 = 10 appeared to be the best
compromise between these two extremes (Fig. 5(c)).

However, calculating the Attacker’s payoff only for the 𝑁𝑡𝑜𝑝 De-
fender’s strategies with the highest payoff may not be the best approach
when they are very similar to each other. Thus, adding some other
(weaker) strategies may be beneficial. To verify this hypothesis exper-
iments with and without adding random individuals were performed.
Namely, in the first scenario each individual from the Attacker’s popu-
lation was evaluated against 𝑁𝑡𝑜𝑝 best Defender’s strategies and in the
second scenario apart from those strategies also 𝑁𝑟𝑎𝑛𝑑𝑜𝑚 random De-
fender’s strategies were added to the evaluation process. Experimental
results show that indeed adding those random supplementary strategies
increases the final Defender’s payoff returned by CoEvoSG.

The best results were obtained for 𝑁𝑟𝑎𝑛𝑑𝑜𝑚 = 10 and 𝑁𝑡𝑜𝑝 = 10. Fig. 6
presents a comparison of the average Defender’s payoff with respect
to 𝑁𝑡𝑜𝑝 with and without addition of random strategies. Incorporation
of a bunch of random Defender’s strategies into the Attacker’s evalua-
tion process extends the initial CoEvoSG formulation [15] and further
improves the results.

7. Results

7.1. Payoffs

Tables 1, 2 and 3 present the average Defender’s payoffs with
respect to the number of graph nodes and time steps, for FIG, WHG and
SEG games, respectively. The results are also compared with the initial
version of the algorithm [15] that does not consider randomly selected
Defender’s strategies during the evaluation of the Attacker’s population,
denoted by CoEvoSG⋆. Dashes mean that a particular algorithm was
not able to compute some of the test game instances within the limit of
100 h per instance. The results are averaged over 20 independent runs
per game instance.

Presented outcomes show only slight deterioration of results when
comparing the evolutionary approach (EASG) with the proposed coevo-
lutionary algorithm (CoEvoSG). The average differences are equal to
0.0030, 0.0018 and 0.0024 for FIG, WHG and SEG instances, respec-
tively. Please note that EASG is a natural baseline for CoEvoSG since
CoEvoSG approximates the Defender’s payoff (in the evaluation proce-
dure) while EASG computes it directly. A relatively small difference
in Defender’s payoffs between the methods stems from the frequent
existence (in over 84% of the cases) of the optimal Attacker’s response
in CoEvoSG population. In such cases the fitness function returns the
same evaluation for both methods.

A comparison with CoEvoSG⋆ (a version of CoEvoSG presented
in [15]) shows that adding random individuals from the Defender’s
population during the Attacker strategies’ evaluation process leads to
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Fig. 5. Comparison of the average Defender’s payoffs and computation times for CoEvoSG parameters used in the evaluation of the Attacker’s population.
Table 1
Average Defender’s payoffs with respect to the number of graph nodes (top) and time steps (bottom) for FlipIt Games.
𝑛 C2016 O2UCT EASG CoEvoSG⋆ CoEvoSG

5 0.890 0.887 0.886 0.886 0.886
10 0.854 0.851 0.847 0.845 0.846
15 0.811 0.807 0.802 0.798 0.800
20 – 0.784 0.780 0.772 0.775
25 – – 0.754 0.746 0.748
30 – – – 0.730 0.731
40 – – – 0.722 0.724

𝑚 C2016 O2UCT EASG CoEvoSG⋆ CoEvoSG

3 0.823 0.821 0.820 0.817 0.818
4 0.817 0.812 0.808 0.805 0.806
5 0.810 0.801 0.798 0.791 0.794
6 – 0.794 0.792 0.791 0.791
8 – 0.789 0.784 0.781 0.782
10 – – 0.780 0.778 0.779
15 – – – 0.774 0.776
20 – – – 0.761 0.763
statistically significantly better outcomes. For all 3 game types, we
obtained 𝑝-value < 0.05 according to 1-tailed paired t-test.

O2UCT slightly outperforms EASG and CoEvoSG but the differences
are not statistically significant - 𝑝-values are equal to 0.34, 0.27 and
.12, respectively for FIG, WHG and SEG, according to one-tailed t-test.
or 21% of the games, CoEvoSG returned better results than O2UCT,
hereas O2UCT was superior in 41% of the cases (for the remaining
8% of the games the outcomes of both methods were equal).

The exact MILP method (C2016) was able to solve 45 FIG, 60 WHG
nd 60 SEG test instances within the allotted time. For these games,
oEvoSG returned the optimal strategy (a difference in Defender’s
ayoff less than 𝜀 = 0.0001) in 29/45 (64%), 38/60 (68%) and 17/60

(28%) cases, respectively. The average differences between the optimal
results and CoEvoSG outcomes equaled 0.0137 (FIG), 0.0023 (WHG)
7

and 0.0102 (SEG).
Overall, CoEvoSG was able to solve much bigger games than any
of the competitive methods, while returning only slightly weaker De-
fender’s payoffs.

7.2. Computation scalability

Figs. 7 and 8 illustrate the computation time of the tested methods
with respect to the number of graph nodes and time steps. In all cases,
the advantage of CoEvoSG is clear. The method maintains near-constant
computation time irrespective of the game size, while other meth-
ods scale approximately linearly (O2UCT and EASG) or exponentially
(C2016). The approximately constant time complexity of CoEvoSG is
caused by maintaining fixed-size Defender’s and Attacker’s populations,

regardless of the remaining game parameters.
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Table 2
Average Defender’s payoffs with respect to the number of graph nodes (top) and time steps (bottom) for Warehouse Games.
𝑛 C2016 O2UCT EASG CoEvoSG⋆ CoEvoSG

15 0.052 0.051 0.051 0.050 0.050
20 0.054 0.053 0.052 0.050 0.051
25 0.048 0.046 0.045 0.043 0.044
30 – 0.044 0.042 0.039 0.040
40 – – 0.040 0.036 0.038
50 – – – 0.029 0.031

𝑚 C2016 O2UCT EASG CoEvoSG⋆ CoEvoSG

3 0.043 0.043 0.043 0.043 0.043
4 0.052 0.050 0.050 0.049 0.049
5 0.055 0.054 0.053 0.052 0.052
6 0.058 0.056 0.054 0.051 0.052
8 – 0.053 0.051 0.048 0.049
10 – – 0.048 0.044 0.046
15 – – – 0.040 0.041
20 – – – 0.038 0.040
Table 3
Average Defender’s payoffs with respect to the number of graph nodes (top) and time steps (bottom) for Search Games.
𝑛 C2016 O2UCT EASG CoEvoSG⋆ CoEvoSG

15 0.122 0.116 0.115 0.115 0.115
20 0.117 0.112 0.106 0.101 0.104
25 – 0.123 0.117 0.115 0.116
30 – – 0.136 0.135 0.135
40 – – – 0.150 0.152
50 – – – 0.139 0.144

𝑚 C2016 O2UCT EASG CoEvoSG⋆ CoEvoSG

3 0.137 0.126 0.118 0.117 0.118
4 0.124 0.113 0.110 0.107 0.109
5 0.106 0.093 0.090 0.085 0.087
6 – 0.129 0.123 0.122 0.123
8 – – 0.112 0.110 0.111
10 – – – 0.142 0.144
15 – – – 0.151 0.154
Fig. 6. Comparison of two versions of the Attacker’s population evaluation: with and
without using random individuals from the Defender’s population.

In summary, presented results demonstrate that despite slightly
worse average Defender’s payoffs the proposed coevolutionary ap-
proach, thanks to excellent time scalability, offers a viable alternative
to both exact and approximate state-of-the-art methods, especially in
the case of larger games which are beyond the capacity of the existing
algorithms.

8. Performance analysis and discussion

The results presented in the previous section demonstrate the ro-
bustness of CoEvoSG and its ability to find close to optimal strategies
with significantly lower computation time. In this section, a more
8

detailed analysis of CoEvoSG performance is presented, e.g. how both
populations interact with each other, and how they evolve in time and
maintain diversity.

8.1. Interactions between populations

Fig. 9 presents an example CoEvoSG run in terms of maximum De-
fender’s and Attacker’s payoffs calculated in the algorithm’s evaluation
procedure. It can be observed that at the beginning the Defender’s pop-
ulation quickly improves. The estimated Defender’s payoff is increasing,
although, this does not mean that the real Defender’s payoff (when
calculated against the overall optimal Attacker’s response) gets higher,
because the Attacker’s population is weak and does not yet contain
adequate response strategies. However, during the evolution process,
the Attacker’s population becomes stronger and sometimes finds the
optimal response (cf. generation 70 in Fig. 9). Starting from generation
145, until the end of the process the Attacker’s population consists
of strong and robust Attacker’s strategies and the Defender payoff’s
estimation becomes accurate.

8.2. Structure and diversity of both populations

It may be interesting to investigate not only interactions between
the best player strategies but also between the entire populations. To
this end, we generated a matrix that presents the Defender’s payoff for
each pair of strategies from the Defender’s and the Attacker’s popula-
tions (see Fig. 10). First of all, it can be noticed that there is no single
Attacker’s response that is optimal for all Defender’s strategies. Some of
the Attacker’s strategies are good for certain subsets of the Defender’s
strategies whereas weak for the others. Populations are clearly diverse
but there are also individuals very similar to each other in both the
Defender’s and the Attacker’s populations — they can be recognized as

rectangles of uniform color.
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Fig. 7. Comparison of computation time (logarithmic scale) with respect to the number of graph nodes.
Fig. 8. Comparison of computation time (logarithmic scale) with respect to the number of time steps.
Fig. 9. Payoffs assigned to the best strategies from Defender’s and Attacker’s populations in consecutive generations in a typical CoEvoSG run. Vertical lines denote the moments
of changing the population being currently developed and evaluated. Dotted line presents the real Defender’s payoff, i.e. the one calculated against the optimal Attacker’s response.
8.3. Attacker’s population evaluation

It is generally desired that the Attacker’s population is composed
of optimal responses to all possible Defender’s strategies. Assigning
the average Attacker’s payoff against all strategies from the Defender’s
population (or a subset of them) as a fitness value may be a weak
approach because a given Attacker’s strategy is usually strong only
against a specific subset of the Defender’s strategies. While such an
Attacker’s strategy should be preserved, the payoff averaging across all
Defender’s strategies will decrease a fitness of such a strategy, posing
the risk of omitting it in the selection process.

Hence, a better idea is to use the maximum metric. However, in
Defender’s population (in order to preserve its diversity) there also exist
certain weaker strategies. For those strategies, most of the Attacker’s
strategies will lead to a high Attacker’s payoff and such an approach
would not allow for distinguishing strong Attacker’s strategies from the
weak ones (the vast majority of the strategies will receive high fitness
evaluation, as a maximum payoff against one of the weak Defender’s
strategies). This observation discredits the calculation of the maximum
payoff with respect to all Defender’s strategies. Fig. 11 confirms this
9

reasoning. It shows the highest Defender’s and Attacker’s payoffs in
consecutive generations with 𝑁𝑡𝑜𝑝 = 𝑁𝐷. It can be noticed that in
the Attacker’s population rarely could be found a strong strategy that
decreases the Defender’s payoff, even though the real Defender’s payoff
(calculated against the respective optimal Attacker’s response) is much
lower. It means that the Defender’s population cannot be fairly assessed
this way.

On the other extreme, if the Attacker’s fitness value was computed
only against the best strategy from the Defender’s population, it would
lead to an oscillation of the Attacker’s population. All Attacker’s strate-
gies would tend to be an optimal response for a particular Defender’s
strategy, becoming vulnerable to other strategies from the Defender’s
population. In such an approach the Attacker’s population would lose
diversity because all individuals would be optimized with respect to
only one particular Defender’s strategy. After the next period of evo-
lution of the Defender’s population the vast majority of the Attacker’s
strategies would again adjust to the new ‘‘target’’ Defender’s strategy,
and so on. Fig. 12 exemplifies this scenario and presents the maximum
Defender’s and Attacker’s payoffs in the CoEvoSG runtime with 𝑁𝑡𝑜𝑝 =
1. In such a case, clear oscillations can be observed. During the turn
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Fig. 10. Example interaction matrix between individuals from the Attacker’s and the Defender’s population after the last CoEvoSG generation. Each row represents one individual
from the Defender’s population, sorted by the expected payoff of the corresponding strategy. Each column represents one individual from the Attacker’s population sorted by the
Defender’s payoff against the best individual from the Attacker’s population. Each element of the matrix is colored according to the Defender’s payoff obtained when playing
strategies from a given row and column — the darker the color the higher the payoff.
Fig. 11. Payoffs of the best strategies from the Defender’s and the Attacker’s populations in consecutive generations in a typical CoEvoSG run with 𝑁𝑡𝑜𝑝 = 𝑁𝐷 . Vertical lines
denote the moments of changing the population being currently developed and evaluated. Dotted line presents the real Defender’s payoff, i.e. the one calculated against the optimal
Attacker’s response.
of the Defender’s population evolution the estimated Defender’s payoff
(calculated against the Attacker’s population) increases quickly but
the real Defender’s payoff (calculated against the optimal Attacker’s
response) remains on the same level which means that the Attacker’s
population does not contain representative strategies (in particular
the optimal one). However, during its evolution period the Attacker’s
population is able to quickly find a good response that decreases the
10
Defender’s payoff. At the same time, since it is optimized against the
best Defender’s strategy only, it loses diversity and the Defender’s
population in the next turn can easily find a strong alternative strategy
(against such undifferentiated Attacker’s responses).

Consequently, as stated in Section 6, an intermediate option was
implemented, i.e. the Attacker’s strategy fitness is the maximum of
the Attacker’s payoffs against the 𝑁 highest fitted individuals from
𝑡𝑜𝑝
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Fig. 12. Payoffs for the best strategies from the Defender’s and the Attacker’s populations in consecutive generations in a typical CoEvoSG run with 𝑁𝑡𝑜𝑝 = 1. Vertical lines denote
the moments of changing the population being currently developed and evaluated. Dotted line presents the real Defender’s payoff, i.e. the one calculated against the optimal
Attacker’s response.
the Defender’s population. Moreover, it was observed during the ex-
periments that the addition of 𝑁𝑟𝑎𝑛𝑑𝑜𝑚 random individuals from the
Defender’s population to the Attacker’s evaluation procedure is benefi-
cial and leads to even better results. A discussion on the parameters
selection presented in Section 6 justifies particular 𝑁𝑡𝑜𝑝 and 𝑁𝑟𝑎𝑛𝑑𝑜𝑚
choices.

9. Conclusions

This paper proposes CoEvoSG method – a novel coevolutionary al-
gorithm for solving sequential Stackelberg Security Games. The method
develops two competing populations of player strategies by specially
designed evolutionary operators.

Experimental evaluation performed on three well-established game
types with more than 800 test instances has proven the efficacy of the
proposed method — in the majority of the test cases optimal solutions
were found. The results are on par with other approximate methods
— O2UCT and EASG. However, the true strength of CoEvoSG lies in its
time efficiency. It scales visibly better than the state-of-the-art methods
and stands out with near-constant computation time irrespective of the
game size.

Thanks to this property CoEvoSG can be employed to solve arbitrar-
ily large games which are beyond the capacity of the methods proposed
hitherto. Moreover, the method is generic and can be easily adapted to
other genres of Security Games. What is more, CoEvoSG is an anytime
algorithm, i.e. is capable of returning a valid solution at any time of
the execution process.

10. Future work

Our future work will concentrate on extending CoEvoSG to a more
general adversarial framework including multiple heterogeneous De-
fenders and/or Attackers [31]. This can potentially be achieved by the
maintenance of the corresponding multiple populations with complex
interactions between them. In such a formulation not only populations
of the opponents (Defenders and Attackers) may influence each other,
but also populations on the same side (either Defenders or Attackers)
can interact with each other in a competitive or collaborative manner.
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