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Abstract

This paper considers the problem of finding optimal strategies in Stackelberg

Security Games when playing against a non-perfectly rational Attacker. To

this end, a novel Duel-based NeuroEvolutionary approach to Security Games

(DNESG) is proposed, which utilizes the Strategy Comparison Neural Net-

work (SCNN) as a surrogate model to compare pairs of Defender’s strate-

gies. SCNN is trained on historical data (past attack attempts) and does not

require any direct information about the Attacker’s preferences regarding

targets, payoff distribution, or decision-making model. SCNN is embedded

in the Evolutionary Algorithm framework and implements a tournament-

based selection method in place of a time-consuming direct strategy eval-

uation. The effectiveness of DNESG is assessed on a set of 90 benchmark

Deep Packet Inspection games inspired by real cybersecurity scenarios. The

proposed method provides high-quality solutions and outperforms state-of-

the-art approaches (both exact and approximate) with statistical significance
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when playing against non-perfectly rational Attacker. Moreover, DNESG of-

fers excellent time scalability, being two orders of magnitude faster than the

state-of-the-art Mixed-Integer Linear Programming method.

Keywords: Neuroevolution, Stackelberg Equilibrium, Security Games,

Bounded Rationality, Evolutionary Computation, Game Theory,

Cybersecurity

1. Introduction

Decades of game theory research have helped to develop more informed

decision-making processes. This is particularly crucial in the context of pub-

lic safety, including protection against theft, terrorism, and cyberattacks.

One specific branch of game theory, known as Stackelberg Security Games5

(SSGs) [1], has gained significant popularity for its ability to model such

types of public safety scenarios. Due to their practical relevance, SSGs have

been vastly influential in security research in recent years.

SSGs are a class of game models with a wide range of practical applica-

tions in many domains such as homeland security [2], natural environment10

protection [3], power markets bidding [4], e-commerce supply chain sustain-

ability [5], or cybersecurity [6]. SSGs are played by two players: the Defender

and the Attacker. The Defender commits to his/her strategy first, and sub-

sequently, the Attacker chooses his/her strategy based on his/her preferences

and/or payoffs, and taking into account the Defender’s strategy. While choos-15

ing the strategy, the Attacker is aware of the Defender’s mixed strategy only,

represented as a probability distribution of the Defender’s pure strategies.

The Attacker does not know the specific Defender’s strategy materialization.
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The objective of the game is to find the Defender’s strategy that maximizes

his/her expected payoff. The problem of finding the optimal strategy for the20

Defender has been proven to be NP-hard [7].

One of the underlying principles of the vast majority of SSG formulations

considered in the literature is the assumption of perfect rationality of the

players, which means that both players would always choose strategies that

are optimal for them. However, many SSGs have been formulated in response25

to practical needs for modeling security-related situations. Such systems are

usually designed to help in choosing the optimal strategy of the Defender,

who can be, for instance, airport guards, security companies, or police. Their

opponents are terrorists, thieves, criminals, etc., whose decisions may be

suboptimal for various reasons (e.g. stress, insufficient knowledge, or time30

pressure). Therefore, it is important that this type of decision imperfection

of the Attacker are taken into account when designing security systems. In

game theory, this imperfection is referred to as bounded rationality (BR) [8].

Previous research in the area of Security Games demonstrated that in-

corporating BR models into the process of computing an optimal Defender’s35

strategy can lead to improved performance when playing against a human

Attacker [9, 10, 11, 12, 13]. However, the selection of a specific BR model is

not always clear, and in many cases, little information is available about the

personality or preferences of the Attacker [14]. To address this issue, instead

of assuming a particular BR model a priori, we aim to learn the Attacker’s40

decision-making model from the past data.

Specifically, we design a neural network able to compare two Defender’s

strategies. The network is embedded in the evolutionary framework [15]
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and used multiple times in the chromosome evaluation phase. The proposed

solution does not require any prior knowledge about the Attacker, as it learns45

solely from historical data (i.e. previous attack attempts).

The algorithm uses a population of individuals, each of which encodes a

candidate Defender’s strategy. The population is evolved over a fixed num-

ber of iterations, during which current strategies are modified by evolution-

ary operators – mutation and crossover. The resulting strategies are then50

indirectly evaluated in the selection procedure in the form of a binary tour-

nament, based on the neural network output. The promoted individuals

constitute the next generation.

1.1. Contribution

The main contribution of this paper is threefold:55

• A novel duel-based neuroevolutionary algorithm for solving Stackel-

berg Security Games with non-perfectly rational Attacker (DNESG) is

proposed.

• The key component of DNESG is a neural network model used in a

binary tournament evaluation, able to accurately compare Defender’s60

strategies and leading to overall high quality solutions.

• In effect, an end-to-end method for learning the Attacker’s decision-

making bounded rationality model based on past data (previous at-

tacks) is obtained. The method uses this information to evolve highly

efficient Defender’s strategies.65
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This study extends our previous conference paper [16], in which a similar

neuroevolutionary system (NESG) was proposed, differing in the following

four aspects:

• Instead of a direct assessment of the chromosomes (candidate De-

fender’s strategies) introduced in [16], a binary tournament evaluation70

is proposed, using specifically trained neural network surrogate model

(SCNN) that compares a pair of strategies provided in the input.

• A selection phase and an elite mechanism are modified accordingly to

utilize the outcomes of a series of SCNN duels when creating a new

generation.75

• The number of past attack episodes (learning samples) required for

efficient approximation of the Attacker’s decision-making model is sig-

nificantly smaller compared to [16], due to different evaluation scheme

(a series of binary tournaments proposed in this paper versus a direct

chromosome assessment implemented in [16]).80

• The role of the neural network component in the whole neuroevolution-

ary method is investigated in detail.

The remainder of this paper is arranged as follows. Section 2 presents

definitions of bounded rationality models used in the experiments, a formu-

lation of Stackelberg Equilibrium, a description of the considered application85

problem from the domain of cybersecurity, and a motivating example game.

An overview of related work devoted to solving SSGs with bounded rational-

ity is presented in Section 3. Section 4 provides a detailed description of the
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proposed surrogate-assisted neuroevolutionary algorithm (DNESG), tailored

for computationally expensive SSGs. In Section 5, the experimental evalua-90

tion of DNESG is carried out on a suite of test games with varying degree

of complexity. In the next section, the results are discussed in the context

of SCNN accuracy, obtained payoffs, as well as robustness and time scalabil-

ity of DNESG. The last section is devoted to conclusions and directions for

future research.95

2. Definitions

2.1. Bounded rationality

The term bounded rationality (BR) was coined in 1957 by Herbert Simon

in the book Models of Man [8]. Initially, this topic did not receive much

attention but gained momentum in 1990s [17] when the use of game theory100

models in practical applications became popular and the necessity to find

models that best reflect reality, i.e. take into account the imperfections of

player’s decisions, arose.

It should be noted that bounded rationality is not equivalent to irrational-

ity. The concept of irrationality or lack of rationality refers to situations in105

which player’s actions are unpredictable or illogical, whereas bounded ratio-

nality assumes that the player is trying to choose the optimal strategy but for

some reason is unable to do so. The main hindering factors include limited

cognitive abilities, lack of skills to accurately evaluate a given situation, lim-

ited time to make a decision, or unpredictable circumstances. Many works110

in the field of psychology indicate that people have a tendency to simplify

reality and choose easier paths than the optimal ones. In [18] they show
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that mental saving does not stem from laziness but prevents the system from

being overloaded. As the complexity of the surrounding world increases,

the need for shortcuts increases, and the loss caused by simplifications and115

non-optimal decisions is lower than the cost of the effort put into deeper

analysis.

Over the years, a handful of popular models of BR were proposed that

refer to different aspects of the human cognitive imperfection and reflect the

general ways how people make decisions. The choice of a particular BR model120

often depends on the problem considered, the circumstances in which it is

solved, or personal traits of a decision maker. Among the most popular, there

are three BR models considered in this paper: Anchoring Theory, Quantal

Response, and Prospect Theory.

2.1.1. Anchoring Theory125

Anchoring Theory (AT) [19] postulates that people have a tendency to

flatten the probabilities of presented choices. In the decision-making pro-

cess, the probability distribution is perceived as being closer to a uniform

distribution than it is in reality. This means that high probabilities of events

are perceived as lower and small probability values are perceived as higher.

Formally, this dependence can be described as follows:

p′(x) = p(x)(1− δ) +
δ

|X|
, (1)

where X is the set of all events, |X| denotes the cardinality of this set, p(x)

is the actual probability of event x ∈ X, p′(x) is the disturbed probability

(perceived by people according to the AT), and δ ∈ [0, 1] is a parameter

determining the strength of the disturbance. For δ = 0 we have p′ = p, which
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means that perceived probabilities are equal to the actual ones, while for130

δ = 1: ∀x∈Xp′(x) = 1
|X| , which means a uniform probability distribution. In

this paper a value of δ = 0.5 is assumed, which is most commonly encountered

in the literature.

2.1.2. Prospect Theory

Prospect Theory (PT) [20] relies on the observation that the aversion to135

losses and the desire for gains are asymmetrical. In psychological experi-

ments, it was shown that people have a strong aversion to taking risks that

could result in significant losses, even in the face of the possibility of making

great gains. In other words, they preferred to participate in less risky bets

even if the expected values were lower.140

The experiments also showed that instead of maximizing the expected

payoff, people subconsciously maximize the so-called prospect (P ), which

can be defined as follows:

P =
∑
i

f(pi)g(ui), (2)

f(pi) =
pγi

(pγi + (1− pi)γ)
1
γ

, g(ui) =

 uα
i for ui ⩾ 0

−θ · (−ui)
β, for ui < 0

(3)

where f and g are functions that transform the perception of the actual

probability pi of obtaining payoff ui. γ, θ, α and β are parameters. In this145

study, in accordance with the recommendations presented in [21], the follow-

ing parameter values are adopted: γ = 0.64, θ = 2.25, α = β = 0.88. Figure 1

visualizes both functions.

9



Figure 1: Functions representing the perception of probability (on the left) and payoff (on

the right) according to the Prospect Theory.

2.1.3. Quantal Response

The theory of Quantal Response (QR) [22] states that people make deci-

sions randomly but with some dependence on the payoff, meaning that the

greater the payoff associated with a certain decision, the higher the proba-

bility of choosing it. This means that the optimal decision has the highest

probability of being chosen, but any other decision can also be made. Ac-

cording to this theory, the probability of making a decision xi is expressed

by the following formula:

p(xi) =
eλu(xi)∑

xj∈Σ eλu(xj)
, (4)

where u(xi) is the expected payoff of decision xi, Σ is the set of all possible150

decisions, and λ ⩾ 0 is a parameter. If λ = 0, the choice is completely

random - every decision is equally probable. For λ→∞ the optimal decision

is definitely made - a fully rational choice. In the experiments described in

this paper, following [23], λ = 0.8 was adopted.
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2.2. Stackelberg Equilibrium155

In Stackelberg Security Games there are two non-cooperative players:

the Defender (D) and the Attacker (A). Their knowledge of the opponent’s

strategy is asymmetric. The Defender chooses his/her strategy first, and

then the Attacker, knowing the Defender’s choice, decides about his/her

strategy. This implies certain advantage of the Attacker in terms of possessed160

information. However, the Defender does not have to choose a pure strategy

– usually he/she chooses a mixed strategy. In effect, the Attacker is aware

of the probabilities with which the Defender will choose each of his/her pure

strategies, but does not know the exact Defender’s decision regarding the

selected strategy.165

Stackelberg Equilibrium (SE) is defined as a pair of player’s strategies

(π̄D, BR(π̄D)) that satisfy the following conditions:

π̄D = argmax
πD∈ΠD

UD(πD, BR(πD)), (5)

BR(πD) = argmax
πA∈ΠA

UA(πD, πA) (6)

where πD and πA denote the Defender and the Attacker strategy, re-

spectively, and ΠD,ΠA are sets of their all possible strategies. BR(πD) is

the optimal Attacker’s response (maximizing his/her payoff) to the strategy170

πD of the Defender. Up(πD, πA) denotes the payoff of player p ∈ {D,A}

when strategies πD and πA are selected, respectively by the Defender and

the Attacker.

Equation 5 defines the optimal strategy π̄D for the Defender, under the

assumption that the Attacker will always choose the best response strategy.175
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Please observe that selection of BR(πD) by the Attacker in Eq. 6 may

not be unique, i.e. there may exist more than one best Attacker’s response

to a given strategy πD of the Defender. In accordance with the definition

of Strong Stackelberg Equilibrium (SSE) [24], if there exist multiple optimal

strategies for the Attacker in Eq. 6 (with the same highest payoff), among180

them the Attacker will select a strategy that results in the highest payoff

for the Defender, i.e. the Attacker will break ties in favor of the Defender.

While this assumption may appear counterintuitive, the opposite approach

may result in SE non-existence [25]. SSE is widely adopted in the SSG

literature and is also considered in this paper.185

It is worth noting that both players commit to their strategies at the

beginning of the game, before the first moves are played, and are unable to

alter them during the gameplay. This implies that throughout the game,

they will take actions according to their chosen strategies, regardless of the

opponent’s moves, as they are not privy to the actions performed by the190

adversary.

2.3. Problem definition

We consider an m-step SSG with a predefined set of n targets T =

{t1, t2, . . . , tn}. Each target t ∈ T has 4 associated payoffs: U j
t , j ∈ {D+, D−, A+, A−}

representing the Defender’s reward (UD+
t ), their penalty (UD−

t ), the At-195

tacker’s reward (UA+
t ), and his/her penalty (UA−

t ). UD+
t > UD−

t and UA+
t >

UA−
t .

The Defender possesses k units. A Defender’s pure strategy σD defines an

allocation of units to targets in each ofm time steps. Units can be reallocated

between the steps. Formally σD = {aus}, where aus ∈ T is a target allocated200
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to unit u in time step s, u ∈ {1, . . . , k}, s ∈ {1, . . . ,m}.

Let’s denote a set of all pure strategies of the Defender by ΣD. Then, a

mixed strategy πD is a probability distribution over ΣD, i.e. πD = {(σD
i , pi)},

where pi is the probability of playing strategy σD
i ∈ ΣD.

A coverage of target t in step s (cs(t)) associated with the mixed strategy205

πD is defined as a probability of the event that at least one unit is allocated to

t in step s when strategy πD is played, i.e. cs(t) =
∑

σD
i ∈πD pi : ∃

aus∈σD
i

aus = t.

The Attacker’s strategy σA consists in choosing one of the targets x

from T . The players’ payoffs are computed as follows:

• If in any time step any Defender’s unit is allocated to x, the Attacker210

is caught and the players receive UD+

x and UA−
x , respectively.

• If none of the Defender’s units is allocated to x across all time steps, the

attack is successful and the players receive UD−
x and UA+

x , respectively.

Therefore, the expected players’ payoffs (UD and UA) are equal to

UD = PxU
D−
x + (1− Px)U

D+
x , (7)

UA = PxU
A+
x + (1− Px)U

A−
x , (8)

where Px =
∏

s=1,...,m(1 − cs(x)) is a probability of successful attack on tar-215

get x.

The game model employs Stackelberg Game principles, which means that

first the Defender commits to his/her strategy πD (probability of units alloca-

tion) and then the Attacker, being aware of πD, determines his/her strategy

(target selection).220
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2.4. Cybersecurity scenario

In cybersecurity, a popular approach to secure computer networks is

through deep packet inspections (DPI) [26]. This method involves a peri-

odic selection of a subset of packets for inspection. This problem can be

formulated as a Stackelberg Game, in which the detection system acts as225

the Defender and the intruder plays the role of the Attacker. The network

computers (hosts) are the targets. The detection system selects a subset of

hosts and inspects packets sent to them for a fixed period of time, then moves

on to the next subset of hosts in the next time step. If malicious packets

go undetected, the attack is successful and the intruder controls the infected230

host. DPI can cause unwanted latency, and the Defender must decide where

to inspect network traffic in order to maximize the probability of successful

detection of malicious packets.

It is possible to detect DPI by monitoring network traffic for patterns

that indicate DPI is being used. For example, if certain types of traffic are235

blocked or slowed down, that could be a sign that DPI is being used. Hence,

the Attacker, by probing hosts can approximate the Defender’s strategy.

While the Defender has no direct knowledge about a potential intruder,

historical data or simulations can be used to approximate his/her preferences

or capabilities.240

2.5. Example game

To illustrate the considered problem, in this section we present an example

of a simple game and calculate the outcomes of 3 BR models described in

Section 3.2, in each case assuming that a particular BR model affects the

Attacker’s decision-making process. Figure 2 depicts a basic variant of the245
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game with no BR assumption. There are n = 5 targets and k = 2 Defender’s

units. For simplicity, we consider a one-step game (m = 1) and ∀t ∈ T UD+
t =

0. The remaining payoffs (UD−
t , UA−

t , UA+
t ) are presented in the figure. Next

to each target, its coverage (c1(t)) is presented. With Eq. 8 we can compute

the Attacker’s expected payoff when he/she decides to attack a given target.250

The highest value is UA
5 = 0.29 which determines that the Attacker will

choose target T5 which, according to Eq. 7, leads to the expected Defender’s

payoff UD = (1− 0.2) · (−0.3) = −0.24.

T1 T2 T3 T4 T5
0.7 0.6 0.1 0.4 0.2

Figure 2: Example game with 5 targets. No bounded rationality model is assumed.

Right to each target, its coverage is presented. The highest Attacker’s payoff is for target

T5 and equals 0.29. Therefore, the Defender’s expected payoff is equal to -0.24.

The above result assumes that the Attacker is perfectly rational and

makes an optimal choice. Now, let us look how different BR models will255

affect the Attacker’s perception and consequently the Defender’s payoff.

Figure 3 presents the same game but with the assumption that the At-

tacker adopts the Anchoring Theory model (see Eq. 1). In this case, the

Attacker perceives targets coverage differently (closer to a uniform distribu-

tion) and now target T2 is the best choice from his/her point of view. This260

results in the Defender’s expected payoff UD = (1 − 0.6) · (−0.9) = −0.36
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(note that when calculating the Defender’s payoff, the real, not disturbed

coverage is considered). Now, UD has significantly lower value than in the

previous case (without BR model). If the Defender knew how the Attacker

perceives the targets’ coverage, he/she could alter this coverage to increase265

his/her expected payoff.

T1 T2 T3 T4 T5
0.6 0.55 0.3 0.45 0.35

Figure 3: Example game with the assumption that the Attacker adopts the Anchoring

Theory decision-making model. Next to each target, a disturbed (according to Eq. 1)

coverage is presented. From the Attacker’s perspective (following AT model) the best

choice is target T2. Therefore, the Defender’s expected payoff equals −0.36.

If the Attacker follows Prospect Theory his/her perception of both the

target coverage and the payoff distribution are disturbed according to Eq.3.

Therefore, the most attractive target from the Attacker’s perspective is now

T3. This implies that the Defender’s expected payoff UD is equal to UD =270

(1− 0.1) · (−0.8) = −0.72. The respective game with the disturbed values is

depicted in Figure 4).

The last considered BR model is Quantal Response. It assumes that the

Attacker, instead of choosing a single target, will attack each target with

a certain probability defined in Eq. 4. The respective game is presented in275

Figure 5. Hence, the expected Defender’s payoff UD equals 0.18 · (1− 0.7) ·

16



T1 T2 T3 T4 T5
0.56 0.18 0.38 0.260.49

Figure 4: Example game with the assumption that the Attacker adopts the Prospect

Theory decision-making model. Next to each target, a disturbed (according to Eq. 3)

coverage is presented. The best choice for the Attacker is target T3. Hence, the Defender’s

expected payoff equals -0.72.

(−0.5) + 0.20 · (1− 0.6) · (−0.9) + 0.205 · (1− 0.1) · (−0.8) + 0.205 · (1− 0.4) ·

(−0.5) + 0.21 · (1− 0.2) · (−0.3) = −0.3585.

Figure 5: Example game with the assumption that the Attacker adopts the Quantal Re-

sponse decision-making model. Values of attack probabilities PA
t are calculated according

to Eq. 4. In the case of QR, there is no single target to be attacked. The Defender’s ex-

pected payoff is calculated based on the attack probability distribution and equals −0.3585.
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3. Related work

From the perspective of this study, methods of solving SSGs published in280

the literature can be roughly divided into two groups: those which assume

perfectly rational players (let’s call them traditional approaches) and the ones

which consider boundedly rational Attackers.

3.1. Traditional approaches

3.1.1. Exact methods285

There are two main categories of solution methods for SSGs: exact and

approximate. Exact methods utilize Mixed-Integer Linear Programming

(MILP) [27] to formulate SSGs as optimization problems with linear con-

straints and compute optimal strategies using specialized software. The pri-

mary disadvantage of MILP methods is their exponential time and memory290

complexity.

One notable example of an exact method is BC2015 [28], which extends

the DOBBS algorithm [27] (designed for solving a simpler class of one-step Se-

curity Games) to extensive-form games [7]. BC2015 transforms an extensive-

form game into its equivalent sequence-form representation, reducing the size295

of the linear program from exponential (as in DOBBS) to linear with respect

to the game tree size.

Another popular exact method is C2016 [29]. Like BC2015, C2016 also

utilizes MILP, but instead of directly computing the Stackelberg Equilibrium,

it utilizes the Stackelberg Extensive-Form Correlated Equilibrium (SEFCE).300

In SEFCE, the Defender can send signals to the Attacker, who must follow

them in his/her choice of strategy. C2016 uses a linear program to compute
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SEFCE and then modifies it by iteratively restricting the signals the Defender

can send to the Attacker, ultimately converging to SE. The experimental

evaluation presented in [29] shows that C2016 is a more time-efficient method305

than BC2015.

Subsequent work [30] shows that in some cases the complexity of SEFCE

can be reduced to polynomial time, which has been adopted in several new

algorithms for computing the optimal correlated strategy. However, since

this algorithm can only be applied to some special game subclasses, in this310

paper C2016 is applied to calculate the reference optimal solutions in the

experimental evaluation of DNESG.

3.1.2. Approximate methods

Approximate methods provide a viable alternative to exact methods and

are able to calculate close-to-optimal solutions much faster, especially for315

larger games that are beyond the capabilities of exact methods. An example

of an approximate method is CBK2018 [31], which is a time-optimized MILP

algorithm.

[32] adopt the concept of finite state machines (FSM), whose states rep-

resent players’ actions, to model SSG strategies. Using FMS can reduce the320

complexity of computing near-optimal SE by considering only a fraction of

strategy space.

A new line of approximate methods based on Monte Carlo Tree Search

(MCTS) [33] combined with UCT sampling [34] of the game tree has been

recently proposed in [35]. Subsequent works have been developed along two325

main approaches. The first one, the Mixed-UCT method [36], uses imperfect-

information UCT to sample gradually stronger Attacker in order to derive
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an approximation of the optimal Defender’s mixed strategy. The second one,

O2UCT [37], combines sampling the Attacker’s strategy space with calculat-

ing the respective best Defender’s strategy for which the sampled Attacker’s330

strategy is the optimal response.

Another approach (EASG [15, 38]) bases on evolutionary computation

techniques. EASG maintains a population of candidate Defender’s strate-

gies and applies specifically designed mutation and crossover operators. The

method is designed as a general framework that can be adapted to various335

types of SSGs. EASG is also used as a base of our previous neuroevolutionary

approach NESG [16] as well as the method proposed in this paper. Section 4

describes EASG in more detail.

In addition to the above general methods, there are also certain heuristic

approaches specific to particular SSG formulations, such as [39, 40] which are340

designed for games on a plane, i.e. in continuous space or [41, 42, 43] which

address SSGs with signaling (the Defender can send some signals/alerts to

deter or warn the Attacker).

The underlying feature of the above-mentioned methods is the assumption

about perfectly rational players who make optimal decisions. In the domain345

of security, however, particularly with regard to Attackers (such as hackers,

thieves, or terrorists), it is unlikely that their choices are always optimal.

Taking this decision-imperfection into account can be advantageous for the

Defender and result in his/her higher payoffs. Recognizing the decision-

making biases of the Attacker potentially allows the Defender to exploit this350

knowledge by means of adjusting his/her mixed strategy.
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3.2. Bounded rationality modeling

The concept of BR has been studied in the literature mainly in the con-

text of single-step games. One of the first BR implementations in SSGs is the

COBRA method [9], which modifies the DOBSS MILP [27] to address the355

Attacker’s behavior with ε-optimality model (the Attacker chooses a strat-

egy randomly from a subset of strategies which are worse from the optimal

strategy by at most ε). A similar approach is taken by Yang et al. [10, 23]

who propose BR models relying on PT and QR, respectively, and demon-

strate their suitability in SSGs through experiments involving human play-360

ers. The SHARP system [11] considers certain game-related aspects, such

as past performance and similarity of game conditions, in repeated SSGs

played against human adversaries. The MATCH method [12] optimizes the

Defender’s strategy against a worst-case outcome within some error bound,

assuming certain deviations from the Attacker’s optimal strategy. Another365

approach, BRQR [44], proposed by Yang et al., refers to the idea of QR.

The method is further improved in the SU-BRQR system [45], which intro-

duces a subjective utility function for the Attacker, with parameters tuned in

experiments involving human players. QR is also used to model bounded ra-

tionality in the context of the optimal defense resources allocation in power370

systems [46]. [47] introduces the nested QR adversary model and points

shortcomings of the QR model related to the assumption that all choices are

made independently.

All the above-mentioned works are implementations of BR models in

MILP formulations of single-step SSGs. To the best of our knowledge, the375

only solution which incorporates BR (in particular AT) into sequential SSGs
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has been recently proposed in [13].

All existing BR solution methods assume a particular model of BR, while

in reality, the Defender usually has no knowledge about the BR model the

Attacker follows. Furthermore, there is no single, objectively the best BR380

concept that can be universally used. To address these limitations, we pro-

pose a neuroevolutionary system that (1) does not require any assumptions

about a particular BR model of the Attacker, (2) is able to learn the At-

tacker’s decision-making model based on past data, and (3) optimizes the

Defender’s strategy accordingly.385

4. Neuroevolutionary approach

The neuroevolutionary method presented in this paper is an extension of

our previous model – NESG, published in the conference paper [16]. The

main innovation is a new, simplified and more effective approach to De-

fender’s payoff assessment. In NESG, a neural network is used to directly390

assess the chromosome fitness in the evaluation/selection phase. Techni-

cally, the network solves a regression problem to approximate the expected

Defender’s payoff in case a strategy provided in the input is played. The net-

work architecture is presented in Figure 6. Due to the inherent difficulty of

this regression task, for bigger games the mean absolute error of the network395

was relatively high and sometimes exceeded the difference between the best

and the worst Defender’s strategies [16].

In order to address this issue and improve the overall efficacy of NESG,

instead of solving the regression problem, we propose to solve a series of

binary classification problems, each of them determining which of the two400
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input strategies yields higher payoff for the Defender. This modified ap-

proach results in visibly higher network accuracy and consequently leads to

the Defender’s strategies with higher payoffs.

...

...

Figure 6: Architecture of strategies evaluation neural network used in NESG method [16].

4.1. Strategy comparison neural network

A strategy comparison neural network (SCNN) is presented in Figure 7.

SCNN is a multilayer perceptron with 2nm input neurons, 3 hidden layers,

and one output neuron. SCNN takes two Defender’s strategies πD
1 and πD

2 as

the input. Since πD
1 and πD

2 are mixed strategies and their length (number

of contained pure strategies) varies, we encoded them as target coverages:

respectively cs1(t) and cs2(t), i.e. probabilities that at least one Defender’s

unit is allocated to target t in time step s. Thus, the neural network input
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vector has the following form:

vin =
(
c11(t1), c

1
1(t2), . . . , c

1
1(tn), c

2
1(t1), c

2
1(t2), . . . , c

2
1(tn), . . . ,

cm1 (t1), c
m
1 (t2), . . . , c

m
1 (tn),

c12(t1), c
1
2(t2), . . . , c

1
2(tn), c

2
2(t1), c

2
2(t2), . . . , c

2
2(tn), . . . ,

cm2 (t1), c
m
2 (t2), . . . , c

m
2 (tn)

)
The input signals are processed to the first hidden layer (1hl), separately405

for each strategy and each time step coverage. In the 1hl, target cover-

ages from all steps are compressed four-fold, each of them to the size
⌈
n
4

⌉
.

Then in the 2hl, compressed signals from all m time steps are combined into

one vector of the size
⌈
n
4

⌉
, still separately for each of the two input strate-

gies. 3hl combines two
⌈
n
4

⌉
representations of the input strategies into a410

common representation of size
⌈
n
4

⌉
. Finally, a single unit with a hyperbolic

tangent activation function provides the network’s output. The output value

< 0 is interpreted as UD(πD
1 ) > UD(πD

2 ) (the first strategy yields a bet-

ter Defender’s payoff). Otherwise, UD(πD
1 ) < UD(πD

2 ) (the second strategy

provides a higher payoff for the Defender).415

4.2. Duel-based NeuroEvolutionary system for Security Games (DNESG)

Figure 8 presents an overview of DNESG. The system does not include

direct chromosome evaluation. Instead, the selection is performed by means

of multiple binary tournaments using SCNN.

4.2.1. Defender’s strategy representation420

Each individual in the population represents one Defender’s mixed strat-

egy: πD = {(σD
i , pi)},

∑
i pi = 1, i ∈ {1, . . . , l} where l is the number of pure
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...

...

...

...

Figure 7: Architecture of strategy comparison neural network. SCNN takes two Defender’s

strategies, each of them in the form of the target coverages in consecutive steps (from 1

to m), as its input. Input signals from two strategies are processed separately until the

last hidden layer, in which they are combined. The output neuron indicates the winning

strategy.

strategies composing πD. Each pure strategy (σD
i ) defines units allocation

to targets in consecutive time steps: σD = {aus}, where aus ∈ T is target

allocation for unit u in time step s, u ∈ {1, . . . , k}, s ∈ {1, . . . ,m}.425

4.2.2. Initial population

The initial population is composed of pure strategies, i.e. l = 1, p1 = 1

for all chromosomes. Each pure strategy is generated randomly, i.e. for each

Defender’s unit and each time step a random target is chosen. However, in

a given time step no two units are assigned to the same target – drawing a430

target is performed from the set of non-covered targets.
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Figure 8: DNESG system overview.

4.2.3. Crossover

Crossover combines pure strategies from two randomly paired individu-

als (parents). Each individual is selected for the crossover with some fixed

probability cr (crossover rate).435

In the first step of the crossover operation, a subset of cr ·psize individuals

is randomly selected from the population, where psize is the population size.

Then, individuals from this subset are randomly paired (in the case of an odd

number of individuals, a randomly chosen one is omitted). From each pair

of chromosomes, a new offspring individual is created in the following way.440

All pure strategies from the parent chromosomes are merged into one mixed

strategy with their probabilities halved. Then each pure strategy σi in this

newly-created chromosome, besides the one with the highest probability, is
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removed with probability (1 − pi)
2 (the lower the probability of a strategy,

the higher its chance of being deleted). Next, probabilities of the remaining445

pure strategies are normalized to sum up to 1. Please refer to [15] for the

rationale behind the above crossover formulation.

4.2.4. Mutation

Mutation introduces random perturbation to a mixed strategy repre-

sented by a chromosome. Each pure strategy included in the mixed strategy450

is modified with probability 0.5. The modification changes the target assign-

ment for a randomly selected Defender’s unit in a randomly chosen time step.

A new target is chosen from the subset of all targets that are not covered in

a given time step.

The mutation operator is applied to each individual independently with455

probability mr (mutation rate).

4.2.5. Selection

Typically, in evolutionary methods, the selection procedure creates a new

population based on the chromosome’s fitness value computed in the evalua-

tion procedure. In DNESG, evaluation is performed indirectly with no need460

for the individual’s fitness computation.

Let’s denote by SCNN : ΠD2 → ΠD a function implemented by the

neural network. SCNN takes two Defender’s strategies π1, π2 ∈ ΠD and

returns the one of them that yields higher Defender’s payoff (according to

the network’s assessment), i.e. SCNN(π1, π2) = argmaxπ∈{π1,π2} UD(π).465

The selection procedure conducts a series of binary tournaments, and

as a result the new population (for the next generation) is gradually built,
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until psize individuals are reached. In each tournament, two individuals are

randomly selected from the pool (P) and compared by the SCNN model

described in Section 4.1. Strategies encoded in the two tournament partic-470

ipants form the SCNN input. SCNN output determines which of these two

individuals should be promoted to the next generation. Sampling of the

tournament participants is performed with return, i.e. selected individuals

can participate in subsequent tournaments. In particular, it is possible for

the same individual to be promoted multiple times – its multiple copies are475

added to the new generation. The pool P is composed of all individuals

from the current generation, extended by all chromosomes that have under-

gone crossover and/or mutation. Algorithm 1 presents a pseudocode of the

selection procedure.

Algorithm 1: Selection procedure. A new generation population

Pnew of psize individuals based on the current pool P is created.

1 SelectionTournament (P)

2 Pnew ← Elite(P) // new population

3 while |Pnew| < psize do

4 πD
1 , π

D
2 ← getRandom(P) // 2 random strategies from P

5 Pnew ← Pnew ∪ SCNN(πD
1 , π

D
2 )

6 return Pnew

Note that in our previous neuroevolutionary approach (NESG) there was480

an additional parameter named selection pressure ps. With probability ps,

the individual with the higher fitness value was copied to the new generation.

Otherwise, the lower-fitted one was promoted. In DNESG there is no need
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for such a parameter, since promoting lower-fitted individuals is still possible

with a certain chance as a result of SCNN incorrect classification.485

Please observe that at the beginning of the selection procedure in Al-

gorithm 1, two best individuals are unconditionally transferred to the next

generation. This technique (called elitism) preserves the best solutions from

being forgotten in the evolution process. However, without the fitness func-

tion values, identifying these two elite individuals is not straightforward. We490

apply SCNN to address this problem. The procedure of finding elite individ-

uals is presented in Algorithm 2. First, the algorithm samples two random

individuals from the population, SCNN determines which of them represents

a better strategy, and they are marked as the best and second best, respec-

tively. Then, for each individual, the algorithm checks (using SCNN) if the495

currently considered individual is better than the best and/or the second-best

individual found so far. If so, an adequate update is performed. The whole

procedure requires at most 2|P| − 3 comparisons made by SCNN.

5. Experimental setup

5.1. Benchmark games500

We used the same set of 90 benchmark game instances as in the NESG

evaluation [16]. For each number of time stepsm ∈ {1, 2, 4} and each number

of targets n = 2i, i ∈ {2, . . . , 7} 5 games were created. Payoffs UD−
t and UA−

t

were real numbers independently drawn from interval (−1, 0), while UD+
t and

UA+
t were sampled from (0, 1). The number of Defender’s units was drawn505

from the interval [
⌊

n
4m

⌋
,
⌈

3n
4m

⌉
] (independently for each game instance), i.e.

at least 1
4
and at most 3

4
of the targets could be effectively protected.
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Algorithm 2: Elite selection from the pool P .

1 Elite (P)

2 πD
1 , π

D
2 ← getRandom(P) // 2 random strategies from P

3 πD
best ← SCNN(πD

1 , π
D
2 )

4 if πD
best = πD

1 then

5 πD
secondBest ← πD

2

6 else

7 πD
secondBest ← πD

1

8 for πD
i ∈ P \ {πD

1 , π
D
2 } do

9 if (SCNN(πD
best, π

D
i ) = πD

i ) then

10 πD
secondBest ← πD

best

11 πD
best ← πD

i

12 else

13 if (SCNN(πD
secondBest, π

D
i ) = πD

i ) then

14 πD
secondBest ← πD

i

15 return {πD
best, π

D
secondBest}

5.2. Parameterization

In order to make a fair comparison with NESG and EASG methods we

follow all evolutionary algorithm parameter values proposed in [16], with no510

additional parameter tuning. These are psize = 100, number of generations

= 1 000, mr = 0.5, cr = 0.8, and elite size = 2. Also, the same as previously

parameter values were assumed in the BR models – AT: δ = 0.5, QR: λ = 0.8,

PT: γ = 0.64, θ = 2.25, α = β = 0.88.
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5.3. SCNN learning515

SCNN is a multilayer perceptron with 2mn, 2m
⌈
n
4

⌉
, 2

⌈
n
4

⌉
,
⌈
n
4

⌉
and 1

units in subsequent layers. The network was trained with backpropagation

with a minibatch of size 32. Adam optimizer [48] was used with the learning

rate set to 0.001 and the exponential decay rates for the moment estimates

equaled 0.9 and 0.990. Hyperbolic tangent activation was applied in the520

output node and rectified linear unit (ReLU) in all other layers.

For each game, training samples for SCNN were generated in the following

way. First, 1 000 random Defender’s mixed strategies were generated from

a set of strategies that included at most 5 pure strategies. Specifically, the

number of pure strategies (l) was randomly chosen from the range {1, . . . , 5}525

and then each of l pure strategies was generated by randomly allocating

the Defender’s units to targets and drawing the probability of each pure

strategy from (0, 1]. The probabilities were then normalized to sum to 1.

Finally, 50 000 unique pairs of strategies were randomly created from the

above-mentioned 1 000 strategies, and they constituted a training set. Please530

note that a baseline solution (NESG) uses a significantly higher number of

input strategies (5 000 vs. 1 000) which makes NESG implementation less

feasible in real-world scenarios.

The training data was generated for each BR model and simulated the

Attacker’s past behavior. It was assumed that the Attacker’s decisions were535

consistent with the respective BR model, and based on this assumption,

the optimal Attacker’s response was calculated by iterating over all possible

strategies. This information was used to determine the exact Defender’s

payoff for each of the two given input strategies and decide which of them
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yielded higher payoff. The more profitable strategy was recorded as the540

expected SCNN output for this training instance.

6. Results

6.1. SCNN accuracy

To evaluate the accuracy of SCNN we generated 50 000 independent test

samples (pairs of Defender’s strategies) in the same manner as the training545

data described in the previous section and verified SCNN accuracy in terms

of pointing out the better Defender’s strategy within the input pair.

Table 1 shows the SCNN accuracy for games with various numbers of

targets and time steps. The results are presented for a no-BR variant, which

means that no bounded rationality model was applied, as well as three BR550

models described in Section 3.2: Anchoring Theory (AT), Quantal Response

(QR), and Prospect Theory (PT). Each value is an average of 20 runs. Stan-

dard deviations are between 0.011 and 0.024.

Obtained results show that the accuracy of SCNN decreases as the num-

ber of targets and/or steps increases, which is expected as the games become555

more complex and the network must process more data – please recall that

the size of the SCNN architecture depends on the game size (number of tar-

gets and time steps). Moreover, differences in performance can be observed

among various BR models. SCNN demonstrates the best accuracy in pre-

dicting payoffs for a no-BR model, which is the simplest case. However,560

distinctly better accuracy is also obtained for QR and AT models compared

to PT. Most likely, this can be attributed to the fact that the use of PT

affects both game parameters, i.e. the perceived probabilities and the pay-

32



offs, whereas the other models only affect one of these two aspects: AT – the

probabilities, QR – the payoffs.565

6.2. Payoffs comparison

In order to assess the effectiveness of the proposed DNESG method, it

was evaluated against 4 other approaches described in Section 3:

• C2016 [29] - generates optimal (exact) solutions without taking into

account the Attacker’s bounded rationality.570

• EASG [15] - is an evolutionary algorithm that generates approximate

solutions without incorporating a BR model.

• EASG BR, where BR ∈ {AT, QR, PT} - is the EASG method incor-

porating the respective BR model, i.e. the Attacker’s response in the

evaluation procedure is calculated assuming a given decision-making575

model.

• NESG [16] - a neuroevolutionary approach that uses a neural network

to directly estimate the Defender’s payoff.

For C2016 and EASG, the Defender’s strategy was first generated (with-

out considering the Attacker’s bounded rationality) and then the associated580

payoff was calculated under the assumption that the Attacker would not

respond optimally but would follow a particular BR model. It is impor-

tant to note that it is not possible to incorporate BR models directly into

MILP solutions (e.g. C2016) as their implementation introduces nonlinear

modifications to payoffs and/or probabilities that would require the use of585

non-linear constraints in MILP, which is beyond the MILP definition.
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Table 2 presents the average Defender’s payoffs in games with varying

numbers of time steps. The results demonstrate that DNESG clearly outper-

forms methods that do not consider bounded rationality (C2016 and EASG).

The advantage of DNESG over these approaches increases as the number of590

targets in the game increases. This suggests that when playing against an

Attacker who is not perfectly rational, it is more effective to use the ap-

proximate DNESG algorithm than to employ the optimal no-BR strategy

generated by C2016.

For a given BR model, the distinction between EASG BR and DNESG595

lies in the population evaluation procedure. EASG BR calculates the exact

response of the Attacker using an explicit (known) BR model, and subse-

quently calculates the Defender’s payoff. DNESG, on the other hand, em-

ploys SCNN to implicitly estimate the BR model of the Attacker.

EASG BR assumes possessing knowledge of the Attacker’s BR model,600

which is unrealistic in many practical scenarios. However, thanks to the di-

rect implementation of the BR model, EASG BR can be considered an oracle

method. NESG and DNESG implement more realistic approaches by trying

to infer the Attacker’s decision-making model from the past data, during the

training process. Due to the above reasons, the NESG and DNESG results605

presented in the table are slightly worse than those of EASG BR.

In almost all cases the results obtained by DNESG are better than NESG

ones, which proves the effectiveness of the modifications proposed in the pa-

per. For each BR model, the advantage of DNESG over NESG is statistically

significant according to a 1-tailed paired t-test with a significance level equal610

to 0.05, and with a normal distribution of data checked by a Shapiro-Wilk
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test.

Generally speaking, the results demonstrate high effectiveness of DNESG.

Close-to-optimal Defender’s strategies are obtained repetitively and for var-

ious game instances.615

While the experimental assessment is very promising, providing any theo-

retical convergence guarantees of DNESG is a challenging task, and generally,

formal rigorous results for (Neuro)Evolutionary Algorithms rarely occur in

the literature. On a general note, based on the construction of DNESG oper-

ators, it could be proven that multiple applications of the proposed mutation620

and crossover can, in principle, lead to any arbitrary solution. In other words,

any mixed strategy (including the optimal one) can be potentially achieved

through an application of these operators, regardless of the initial popula-

tion selection. Similarly, it can be proven that DNESG operators are able to

transform any mixed strategy into any other mixed strategy. However, we625

cannot say anything about the corresponding time requirements.

6.3. Results repeatability

DNESG is a highly non-deterministic method. Creating the initial popu-

lation, the use of mutation and crossover operators, and the neural network-

based selection – all these components contain random factors. Thus, the630

mere ability to obtain good solutions, discussed in the previous section, is

not sufficient for a comprehensive evaluation of the algorithm. An equally

important aspect is the ability to reproduce good results.

In order to check the repeatability of DNESG results, for each game, a

standard deviation of the Defender’s payoffs was computed over 20 runs. The635

mean standard deviation equaled 0.0023 with the maximal value of 0.0087,
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which are very low values relative to the Defender payoffs’ range.

6.4. Time scalability

Figure 9 compares the time scalability of the algorithms. The computa-

tion time for neuroevolutionary approaches (NESG and DNESG) is presented640

from two perspectives: one – including the time for neural network training,

and the other one – without taking into account the training time (only the

inference time is considered). Typically, the training is performed beforehand

as a separate step and does not impact the decision-making process.

The analysis of Figure 9 indicates that C2016 (MILP-based) algorithm645

exhibits a significant increase in computation time as the number of targets

increases, in contrast to evolutionary methods (EASG, EASG BR, NESG,

and DNESG). NESG and DNESG are faster than EASG and EASG BR due

to their method of calculating the Defender’s strategy, which utilizes a neural

network instead of iterating over all possible Attacker’s strategies and finding650

the best response (which is the most time-consuming part of EASG [49, 50]).

Computation times of NESG and DNESG are close to each other. Both

solutions make O(psize) requests to the respective neural network: NESG to

evaluate each of psize individuals, DNESG to compare individuals in pairs

(O(psize)) and to perform the elite selection (O(psize)). Since the network in655

DNESG is bigger (it takes two Defender’s strategies in the input) its training

time is slightly higher than the NESG network.

7. Conclusions

In this paper, we propose a novel neuroevolutionary method (DNESG)

for calculating the Defender’s payoff in Stackelberg Security Games with660
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Figure 9: Time scalability of different methods. EASG and EASG BR are shown as

one line since the difference between their computation times is negligible. Dotted lines

indicate the time which includes neural network training (for NESG and DNESG).
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bounded rationality. The core of the introduced solution is the strategy com-

parison neural network (SCNN) that can effectively compare two candidate

Defender’s strategies without having explicit knowledge about the Attacker’s

payoff distribution or bounded rationality model.

In the security management area, it is often infeasible for the Defend-665

ers to have complete information about the Attacker’s payoff distribution.

Typically, the existing algorithms assume that the Attacker is perfectly ra-

tional, which may not be true in practice due to cognitive biases, incorrect

perception, or imperfect information [51]. The proposed neuroevolutionary

method does not require assuming the perfect rationality of the Attacker,670

and instead can infer the implicit Attacker’s decision-making model through

learning from historical data. The method uses this inferred model to evolve

highly efficient Defender’s strategies.

Experimental evaluation performed on 90 game instances with various

characteristics and 3 popular BR models demonstrates the superiority of the675

proposed approach when playing against Attackers who do not exhibit per-

fectly rational behavior. DNESG offers high-quality solutions with improved

computational scalability.

A novel surrogate neural network model (SCNN), instead of directly ap-

proximating the Defender’s payoff (like in NESG), pairwise compares the680

Defender’s strategies in a series of duels, which turns out to be a signif-

icantly simpler task. A selection phase of the evolutionary process and an

elite mechanism are modified accordingly to utilize the outcomes of the series

of SCNN duels when creating a new generation.

Thanks to this, the DNESG results are statistically significantly better685
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than the NESG, and training the SCNN model requires a notably smaller

amount of historical data (past gameplays).

Stackelberg Security Games have been successfully applied to numerous

security domains, for instance the system for scheduling Los Angeles Inter-

national Airport canine patrols [52], the PROTECT system for randomizing690

schedules of US Coast Guard’s resources in Boston harbour [53], the TRUSTS

system for scheduling patrols for fare inspection in Los Angeles Metro sys-

tem [54], or the PAWS system to prevent poaching and protecting wildlife in

Queen Elizabeth National Park in Uganda [55].

Due to knowledge-free design and generic formulation, the proposed DNESG695

method can be applied to various real-world security scenarios, including the

above-mentioned problems. One example of such a scenario (Deep Packet

Inspection) is considered in the paper.

A potential limitation of DNESG is the necessity of possessing historical

data related to past Attacker’s activities, which is required to train the SCNN700

to approximate the Attacker’s behavior scheme (bounded rationality model)

for a given problem setup.

Our future plan is to extend DNESG to address more complicated Secu-

rity Games, e.g. games with a certain degree of the opponent’s observabil-

ity or games with multiple heterogeneous Defenders and/or Attackers [56,705

57, 58]. Another direction of planned works is verification of the proposed

method in various real-life problems.
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[49] A. Żychowski, J. Mańdziuk, Coevolutionary approach to sequential860

Stackelberg Security Games, in: Proceedings of the 22nd International

Conference on Computational Science (ICCS), Springer, 2022, pp. 103–

117.
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