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Abstract
The paper introduces a novel hybrid island-based framework in
which diverse metaheuristics cooperate to e#ectively explore the
search space. A core component of the framework is a diversity-
driven migration mechanism, enabling adaptive management of
the information $ow between islands. Three fundamental aspects
of migration - what to migrate, when to migrate, and where to mi-
grate - are thoroughly analyzed, leading to the development of
strategies that foster synergy between heterogeneous algorithms.
These strategies balance exploration and exploitation, ensuring
e#ective global and local search. The framework was evaluated on
a set of diverse optimization benchmarks, both discrete (Traveling
Salesman Problem instances) and continuous (BBOB functions).
Experimental results demonstrate that the proposed approach sur-
passes traditional algorithms and their island-based variants in
convergence speed, solution quality, and resilience to stagnation.
Adaptive mechanisms dynamically adjust migration strategies dur-
ing the optimization process, further enhancing the framework’s
e#ectiveness. The proposed method represents an advancement
in hybrid metaheuristic systems, o#ering scalability and $exibility
that are essential for solving complex optimization tasks.

CCS Concepts
• Computing methodologies→ Search methodologies; Con-
tinuous space search; Discrete space search.
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1 Introduction
Optimization problems are at the core of many scienti%c and indus-
trial challenges, including machine learning model tuning, supply
chain logistics, network design, and engineering system optimiza-
tion. These problems are often complex, featuring high dimension-
ality, multimodal landscapes, and con$icting objectives. Traditional
optimization methods, such as gradient-based approaches, often
fall short when dealing with non-linear, discontinuous, or noisy ob-
jective functions. To overcome these limitations, population-based
metaheuristics have emerged as powerful alternatives for solving
such problems.

Population-based metaheuristics, including Genetic Algorithms
(GAs) [4], Particle Swarm Optimization (PSO) [16], Ant Colony
Optimization (ACO) [5], and Di#erential Evolution (DE) [25], em-
ploy a population of candidate solutions to search the problem
space. These algorithms are inspired by natural or social processes,
such as biological evolution, swarm behavior, or pheromone-based
communication, and operate by iteratively re%ning the population
through various mechanisms. The diversity of solutions within the
population plays a critical role in enabling these methods to e#ec-
tively explore the search space and avoid premature convergence
to suboptimal solutions. While these algorithms have proven e#ec-
tive across numerous applications, each has inherent strengths and
weaknesses. For example, GAs excel at global exploration but may
struggle with local exploitation, while PSO o#ers fast convergence
but is prone to stagnation in multimodal landscapes.

One approach to address the limitations of individual population
is the use of island-based evolutionary algorithms. In island-based
models the entire population is divided into subpopulations, each
evolving independently on separate “islands”. These islands pe-
riodically exchange individuals through a migration mechanism,
enabling the transfer of solutions between subpopulations. This
structure not only helps maintain diversity across the entire popula-
tion but also allows subpopulations to specialize in di#erent regions
of the search space. Migration strategies (such as selecting indi-
viduals to migrate based on %tness, diversity, or other criteria) are
crucial for the e#ectiveness of the approach. Island-based models
are particularly well-suited for parallelization and distributed com-
puting, further enhancing their scalability and e&ciency. Despite
these advantages, most existing implementations of island-based

https://orcid.org/0000-0003-0026-5183
https://orcid.org/0000-0001-8837-4442
https://orcid.org/0000-0003-0947-028X
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


GECCO’25, July 14–18, 2025, Málaga, Spain Adam !ychowski, Xin Yao, and Jacek Ma"dziuk

methods focus on a single metaheuristic (usually evolutionary algo-
rithms) [9], limiting the potential for exploiting the complementary
strengths of di#erent algorithms.

An important consideration in population-based and island-
based models is the role of diversity in the optimization process.
Diversity refers to the variety of solutions within the population
and is critical for both global exploration and local exploitation.
Insu&cient diversity can lead to premature convergence, where the
algorithm stagnates in suboptimal regions of the search space, while
excessive diversity may slow down convergence by weakening the
focus on promising solutions. Island-based models inherently pro-
mote diversity by isolating subpopulations. Di#erent algorithms
have distinct mechanisms for generating and maintaining diversity,
and combining them in an island-based framework can enhance the
global search process, reduce the risk of stagnation, and improve so-
lution quality. However, this advantage can be further ampli%ed by
migrating certain individuals between islands to enhance diversity.

This paper aims to address the gap in existing research by propos-
ing a novel hybrid island-based optimization framework that inte-
grates multiple population-based metaheuristics. In the proposed
framework, each island employs a distinct metaheuristic, such as
GA, PSO, or ACO, to independently explore the search space. These
islands cooperate through a migration mechanism driven by popu-
lation diversity, ensuring that promising solutions are shared while
maintaining a balance between exploration and exploitation. By
leveraging the complementary strengths of di#erent algorithms,
the framework creates a cooperating portfolio of metaheuristics,
enhancing the overall search process.

The main contributions of this work are as follows:

• Hybrid island-based framework: We introduce a novel frame-
work that combines multiple metaheuristic algorithms in an
island-based setting, enabling collaborative optimization.

• Extensive experimental research on migration strategies: We
conduct an in-depth study exploring variousmigration strate-
gies, driven by three core research questions: What to mi-
grate, When to migrate, and Where to migrate. This inves-
tigation evaluates multiple migration variants to optimize
collaboration between islands.

• Diversity-driven migration mechanism: A novel adaptive mi-
gration strategy based on population diversity is proposed
to dynamically adapt the $ow of individuals between islands,
fostering e#ective cooperation.

• Empirical evaluation: We conduct extensive experiments on
a suite of benchmark optimization problems, demonstrating
the framework’s superiority in terms of convergence speed,
robustness, and solution quality compared to application of
a single-algorithm and traditional hybrid approaches.

2 Related work
2.1 Island-based algorithms
Island-basedmodels [17], also known as distributed ormulti-population
models, partition the global population into subpopulations (islands)
that develop independently, occasionally exchanging individuals
through migration.

Whitley et al. [32] provided one of the foundational studies by
demonstrating how island models allow independent subpopula-
tions to evolve in isolation before sharing solutions. This mecha-
nism prevents premature convergence and supports diversity by
avoiding the dominance of a single solution.

Skolicki and De Jong [30] and [29] examined the e#ects of migra-
tion sizes and intervals on island models, highlighting the required
balance between exploration and exploitation to optimize perfor-
mance. Their %ndings suggest that appropriate tuning of migration
parameters can signi%cantly improve the algorithm’s e&ciency.

Meng et al. [22] introduced a dynamic island model based on
spectral clusteringwithin GAs. Their approach adaptively organizes
subpopulations, enhancing convergence rates and solution quality
by aligning the island structure with the problem’s landscape.

The island model framework has also been successfully applied
to other heuristic methods, e.g. PSO [1], DE [2], ACO [23].

2.2 Diversity in population-based algorithms
Maintaining diversity within populations is crucial for the e#ec-
tiveness of population-based algorithms, as it prevents premature
convergence and ensures a comprehensive exploration of the search
space [11]. The theoretical underpinnings of diversity in algorithm
portfolios are reinforced by analysis of diversity in Genetic Pro-
gramming [13].

Gustafson and Burke [12] presented the speciation island model,
an alternative parallel Evolutionary Algorithm (EA) that promotes
diversity through speciation. This model demonstrated improved
performance in complex optimization tasks by maintaining diverse
subpopulations. Similar approach was proposed in [15] with Hier-
archical Fair Competition (HFC) model which prevents premature
convergence through hierarchical subpopulations.

Gozali and Fujimura [10] introduced the DM-LIMGA algorithm,
featuring a dual migration mechanism that preserves diversity by
facilitating migration between both neighboring and distant islands.
This approach e#ectively balanced exploration and exploitation,
reducing the likelihood of premature convergence.

Araujo and Batista [3] developed a diversity-driven migration
strategy for distributed EAs, where migration decisions are guided
by diversity metrics to prevent the algorithm’s stagnation.

2.3 Portfolios of metaheuristics
Algorithm portfolios combine multiple metaheuristic strategies to
tackle complex optimization problems more e#ectively than indi-
vidual algorithms [8]. By leveraging the complementary strengths
of di#erent methods, portfolios can adapt to diverse problem land-
scapes. The prior work was usually limited to di#erent parameteri-
zations of the same metaheuristic or creating algorithms portfolio
which runs all instances in parallel (without communication).

Liu et al. [20] proposed an automatic construction of parallel
portfolios through explicit instance grouping. Their approach tai-
lored optimization resources to speci%c problem types, enhancing
the overall e#ectiveness of metaheuristic ensembles.

Tang et al. [31] and Liu et al. [21] introduced a co-evolutionary
adversarial framework for constructing algorithm portfolios, where
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algorithms are iteratively optimized in parallel. This method empha-
sized the importance of leveraging algorithm diversity to adaptively
address the problem complexity.

Li and Gonsalves [18] proposed a parallel hybrid island meta-
heuristic algorithm, where di#erentmetaheuristics were assigned to
individual islands. This approach leveraged the strengths of various
optimization strategies, improving convergence speed and solution
quality. Unlike Li and Gonsalves [18], which primarily focuses on
hybridization of metaheuristics, our research emphasizes designing
an optimal migration strategy to e#ectively manage population
diversity across islands.

3 Proposed solution
3.1 Solution overview
In the proposed solution, we aim to combine the advantages of
prior approaches and introduce a novel algorithm that leverages
cooperating metaheuristics. The primary objective is to harness
the synergy of diverse optimization methods to achieve stronger
solutions and enhance convergence. Our approach is based on
the well-established island model, but we contend that the use of
di#erent metaheuristics on each island necessitates a rede%nition of
the migration strategy. To address this issue, we evaluated various
migration approaches and demonstrated that maintaining diversity
plays a particularly critical role in this context.

Figure 1: Overview of the proposed solution. Populations in
multiple islands are developed by di!erent metaheuristics
with periodic migrations between islands.

Figure 1 provides an overview of the proposed method. In gen-
eral, populations across multiple islands are developed using dis-
tinct metaheuristics, with periodic migrations occurring between
islands. We consider a set of 𝐿 islands, denoted as I. Each island
𝑀 ↑ I is characterized by three attributes: 𝑀𝐿𝑀𝐿𝑁𝑂𝑃𝑄𝑅𝑀𝑆 - represent-
ing a set of 𝑁𝑇 candidate solutions (individuals); 𝑀𝑈𝑉𝑄𝑃𝑊𝑉𝑁𝑋𝑅𝑌𝑄𝑅𝑍 , the
speci%c metaheuristic algorithm used to evolve 𝑀𝐿𝑀𝐿𝑁𝑂𝑃𝑄𝑅𝑀𝑆 ; and
𝑀𝑆𝑉𝑅𝑎𝑊𝑏𝑀𝑁𝑋𝑌 ↓ I, which de%nes the set of neighboring islands from
which migration to 𝑀 can occur. Algorithm 1 outlines the high-level
pseudocode of the proposed method.

Initially, the population of each island is uniformly randomized.
The evolution process is then carried out over a %xed number of
%tness function evaluations, during which islands evolve their pop-
ulations and occasionally exchange individuals through migration.
Migration occurs under speci%c conditions (line 6): for each island,
a decision on whether migration is necessary is made based on its

Algorithm 1 Pseudocode of the proposed method.
1: for each island 𝑇 ↑ I do
2: initialize 𝑇𝐿𝑀𝐿𝑁𝑂𝑃𝑄𝑅𝑀𝑆 with random individuals
3: end for
4: while evaluation_budget > 0 do
5: for each island 𝑇 ↑ I do
6: if needs_migration(𝑇 ) then
7: 𝑇𝐿𝑀𝐿𝑁𝑂𝑃𝑄𝑅𝑀𝑆 = 𝑇𝐿𝑀𝐿𝑁𝑂𝑃𝑄𝑅𝑀𝑆↔ migrate_from(𝑇𝑆𝑇𝑅𝑈𝑉𝑊𝑀𝑁𝑋𝑌 )
8: end if
9: end for
10: for each island 𝑇 ↑ I do
11: 𝑇𝐿𝑀𝐿𝑁𝑂𝑃𝑄𝑅𝑀𝑆 = next_generation(𝑇𝐿𝑀𝐿𝑁𝑂𝑃𝑄𝑅𝑀𝑆 , 𝑇𝑍𝑇𝑄𝑃𝑉𝑇𝑁𝑋𝑅𝑌𝑄𝑅𝑎 )
12: evaluate(𝑇𝐿𝑀𝐿𝑁𝑂𝑃𝑄𝑅𝑀𝑆 )
13: evaluation_budget = evaluation_budget ↗ |𝑇𝐿𝑀𝐿𝑁𝑂𝑃𝑄𝑅𝑀𝑆 |
14: end for
15: end while
16: return the best individual from I

population state and, potentially, the states of other populations.
The precise conditions for migration and the de%nition of “popula-
tion state” are elaborated in subsequent sections. After migration,
the next generation of the population is produced using the meta-
heuristics associated with the island (line 11). This process updates
the population state and consumes part of the evaluation budget
(lines 12–13).

3.2 Migration strategies
While the island-based concept of our method is inspired by existing
works, we assert that the migration strategy is a pivotal compo-
nent of the proposed island-based algorithm. Without migration,
populations on di#erent islands evolve independently; migration in-
troduces the collaboration that de%nes the strength of island-based
algorithms. Selecting an appropriate migration strategy becomes
particularly critical in a heterogeneous setting, where di#erent
metaheuristics are applied on di#erent islands, leading to poten-
tially signi%cant di#erences among populations.

To enhance the performance and adaptability of our proposed al-
gorithm, we design speci%c strategies to answer three fundamental
questions regarding migration:What to migrate? When to mi-
grate? and Where to migrate? These aspects form a backbone of
our migration mechanism and are carefully addressed to maintain
diversity and cooperation among heterogeneousmetaheuristics.We
proposed and tested multiple strategies described below. Detailed
results and further analysis are presented in Section 5.

3.2.1 When to migrate? Migration timing plays a crucial role in bal-
ancing exploration and exploitation. We propose several strategies
to determine when migration should occur:

1) Periodic migration every 𝑂 iterations: In this baseline strat-
egy, migration is triggered at %xed intervals, regardless of
the population’s state. This is the most common approach
in the literature.

2) Average %tness doesn’t increase for 𝑃 iterations: Migration
is triggered when the average %tness of the population on
an island remains stagnant for 𝑃 consecutive iterations. This
condition helps identify cases where the population con-
verges prematurely to a local optimum.
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3) Maximum %tness doesn’t increase for 𝑃 iterations: In this
strategy, migration occurs if the best %tness value (maxi-
mum %tness) within an island’s population does not improve
for 𝑃 iterations. This focuses on identifying stagnation in
achieving higher-quality solutions.

4) Average and maximum %tness don’t increase for 𝑃 iterations:
Combining the previous two criteria, migration is triggered
when neither the average %tness nor the maximum %tness
shows improvement over 𝑃 iterations.

5) Diversity doesn’t increase for 𝑃 iterations: Diversity is a key
indicator of a population’s ability to explore the search space
e#ectively. If diversity within an island’s population does not
improve for 𝑃 iterations, migration is initiated to introduce
new genetic material and avoid premature convergence.

6) Combination of 4 and 5: Migration occurs if either the aver-
age and maximum %tness fail to increase (as in 4) or diversity
remains stagnant (as in 5). This hybrid strategy aims to ad-
dress both the %tness stagnation and the lack of diversity.

3.2.2 What to migrate? Selecting the individuals for migration is
critical to maintaining the balance between diversity and %tness.
We propose the following strategies:

A) Individual with the best %tness: The individual with the
highest %tness on the donor island is migrated. This strategy
prioritizes exploitation by sharing the best solution found so
far with the neighboring islands and it is the most popular
approach in the existing literature.

B) Individual that increases diversity the most: The individual
selected for migration is the one that contributes the greatest
increase in diversity to the receiving island’s population. This
strategy prioritizes exploration by ensuring a more varied
population.

C) Random individual that increases diversity: A randomly cho-
sen individual from the donor island’s population is selected,
provided it contributes to increasing diversity on the receiv-
ing island. This introduces stochasticity while maintaining
a focus on diversity.

D) Combination of diversity increment and %tness: The mi-
grated individual is chosen based on a sum of its contribution
to diversity and %tness, with both metrics normalized to a
[0,1] range. This approach seeks to balance exploration and
exploitation, leveraging the strengths of both.

3.2.3 Where to migrate? The topology of migration determines
the structure of interaction between islands. We explore 4 primary
strategies (visualized in Figure 2):

Ring – in this con%guration, each island exchanges individuals
only with its immediate neighbors in a prede%ned Ring struc-
ture. This localized interaction fosters gradual propagation
of solutions across the system.

Clique - each island is directly connected to every other island. Indi-
viduals can migrate between any pair of islands, enabling a
high level of interaction. This topology promotes faster prop-
agation of high-quality solutions and maintains diversity by
allowing individuals to exchange across the network.

Cycle - unlike the Ring topology, which allows bidirectional migra-
tion, the Cycle topology restricts the $ow to one direction –

each island sends individuals to the next island in a prede-
%ned cyclic order.

Star - a central hub island is designated to coordinate migrations.
All other islands send individuals to the central hub, which
redistributes them to other islands.

(a) Ring (b) Clique

(c) Cycle (d) Star

Figure 2: Tested island migration topologies.

By addressing the fundamental questions of What to migrate?
When to migrate? and Where to migrate?, we aim to test various
migration strategies ensuring e#ective cooperation and diversity
management across heterogeneous metaheuristic algorithms. The
interplay between these strategies is pivotal to achieving robust
optimization performance. Detailed empirical evaluations of these
strategies are presented in subsequent sections.

4 Experimental setup
4.1 Tested problems
We evaluated the proposed solution using two well-established
benchmark problem domains: Traveling Salesman Problem (TSP)
and Black-box Optimization Benchmarking (BBOB) framework.

For the TSP, we randomly selected 10 instances from the widely-
used TSPLIB library [27]. These instances consist of between 400
and 724 nodes (cities), speci%cally: rd400, !417, pcb442, d493, att532,
si535, u574, p654, d657, and u724.

For BBOB, we utilized 12 problem instances from the COCO
platform [14] dataset: f2, f4, f6, f8, f10, f12, f14, f16, f18, f20, f22,
and f24 [7]. These functions include all even-numbered functions,
ensuring a diverse distribution across di#erent groups characterized
by varying properties. Number of dimensions for all functions was
set to 20.

The TSP represents a discrete optimization problem, while BBOB
consists of continuous optimization tasks. This distinction makes
them fundamentally di#erent in nature, providing a comprehen-
sive testbed for evaluating the performance of our solution and its
variants across diverse problem types.

4.2 Algorithm setup
In our experiments, we employed three distinct and widely recog-
nized heuristic algorithms: PSO, GA, and ACO. These algorithms
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were chosen due to their fundamentally di#erent properties and
mechanisms of operation, ensuring diversity in the optimization
approaches considered. It is important to note that the selection of
speci%c metaheuristics is not the primary focus of this study. The
main objective of this work is to introduce a general framework
and evaluate the performance of various diversity-driven migration
strategies. The choice of particular heuristic algorithms could be
explored in greater depth in future research. At this stage, our in-
tention was to ensure that the considered algorithms are distinct in
nature to demonstrate the applicability of the proposed framework.

We utilized standard implementations of the selected algorithms,
previously proposed in the literature. Speci%cally, for continuous op-
timization, we employed the following implementations: ACO [19],
GA [24], and PSO [6]. For the TSP, we used ACO [33], GA [26], and
PSO [28].

For our initial experiments, the number of islands, 𝐿 , was set to
6, with 2 islands allocated to each of the three metaheuristic algo-
rithms mentioned above. The population size for each island was
%xed at 𝑁𝑇 = 100. Details regarding the algorithm parameterization
can be found in the supplementary material.

All experiments were conducted independently 20 times using
di#erent random seeds. The results presented in the following sec-
tion represent averages over all runs and 10 benchmark instances,
resulting in a total of 20 ↘ 10 = 200 outcomes. Statistical signif-
icance was checked according to the Wilcoxon signed-rank test
with 𝑄-value ≃ 0.05.

To ensure a fair comparison, we set a uniform %tness function
evaluation budget of 105 evaluations for all algorithms. Wall clock
time was not reported, as the di#erences in execution times be-
tween the tested algorithm variants and parameter settings were
not signi%cant.

Following the approach outlined in [3], we calculate the diver-
sity metrics as the average (over the problem dimensions) of the
standard deviations computed for each dimension of the solution
encoding vectors. Speci%cally, given a population 𝑀𝐿𝑀𝐿𝑁𝑂𝑃𝑄𝑅𝑀𝑆 =

{𝑅1, 𝑅2, . . . , 𝑅𝑆𝑏 } and a solution x𝑅𝑐 = [𝑃𝑅𝑐1 , 𝑃𝑅𝑐2 , . . . , 𝑃𝑅𝑐𝑐 ] associated
with individual 𝑅𝑑 , the diversity is de%ned as:

1
𝑆

𝑐∑
𝑒=1

𝑇 ({𝑃𝑅1
𝑒
, 𝑃𝑅2

𝑒
, . . . , 𝑃

𝑅𝑆𝑏
𝑒

}), (1)

where 𝑇 ({𝑃𝑅1
𝑒
, 𝑃𝑅2

𝑒
, . . . , 𝑃

𝑅𝑆𝑏
𝑒

}) represents the standard deviation
of the values in dimension 𝑈 across the population. This metric
provides a measure of the spread or variability of solutions in each
problem dimension, averaged over all dimensions 𝑆 .

5 Results
This section presents the experimental evaluation of the proposed
framework, highlighting the impact of migration strategies, hy-
bridization of metaheuristics, and adaptive mechanisms on opti-
mization performance across benchmark problems.

5.1 Migration -When,What, and Where
Firstly, we investigated various migration strategies as described
in Section 3. Since the three key aspects of migration—when to
migrate, what to migrate, and where to migrate—can in$uence each

other, it is challenging to isolate their e#ects by holding two of
them constant while varying the third one. To address this interde-
pendence, we tested all possible combinations of these strategies,
resulting in a Cartesian product of their con%gurations. This ap-
proach produced 96 unique combinations (6 ↘ 4 ↘ 4). For each
combination, every test problem instance was executed 20 times to
ensure statistical robustness. Rankings of the combinations were
then determined for each problem instance, based on the average
performance across these 20 runs. The frequency of periodic migra-
tions (𝑂) in the %rst "When to migrate" strategy was set to 20. For
all other strategies, the condition-checking period (𝑃 ) was set to 10,
based on insights gained from preliminary experiments (details are
provided in the supplementary material.

The best-performing combination, with the lowest average rank-
ing across both TSP and BBOB problem sets, was (6, D, Clique)
with the average ranking equal to 2.6 and 4.4, respectively. This
corresponds to the sixth "When to migrate" strategy (migration
occurs when either the average and maximum %tness fail to im-
prove or population diversity stagnates), the "D" strategy for "What
to migrate" (migrating the individual that maximizes the sum of
normalized diversity increment and %tness), and the Clique topol-
ogy for "Where to migrate." The next best combinations were (6, D,
Ring), (4, D, Clique), and (4, D, Ring).

At the opposite end of the spectrum, the weakest combinations
were (5, B, Cycle), (5, B, Star), and (2, B, Star). Due to space con-
straints, Tables 1, 2, and 3 only present the average results for
each "When," "What," and "Where" strategy independently. Com-
prehensive results for all 96 combinations can be found in the
supplementary material.

Table 1: Average rank and "tness values for di!erent "When
to migrate" strategies (see Sec. 3).

When
variant

TSP BBOB
Avg rank Avg %tness Avg rank Avg %tness

1 15.9 35571 21.3 1.609
2 49.2 35605 46.8 1.635
3 11.6 35570 18.1 1.586
4 18.0 35579 20.8 1.560
5 29.4 35588 32.9 1.593
6 7.2 35559 12.1 1.570

5.1.1 When to migrate? The results indicate that the best migration
performance was achieved with the sixth strategy, which combines
conditions for migration based on both %tness and diversity. This
suggests that leveraging multiple stagnation criteria provides a
more reliable indicator for migration, likely due to its ability to
capture both convergence and premature stagnation phenomena.
The next best strategies involved migration based on stagnation
of maximum %tness (strategies 3 and 4), followed by the classical
%xed-period migration (strategy 1).

In contrast, the poorest results were associated with migration
criteria based solely on diversity stagnation (strategy 5) or average
population %tness (strategy 2). These metrics are potentially less
stable and more susceptible to noise introduced by the stochastic



GECCO’25, July 14–18, 2025, Málaga, Spain Adam !ychowski, Xin Yao, and Jacek Ma"dziuk

components of metaheuristics, such as mutation. For instance, mu-
tation can cause $uctuations in average %tness across generations,
reducing the reliability of this metric as a migration trigger.

Table 2: Average rank and "tness values for di!erent "What
to migrate" strategies (see Sec. 3).

What
variant

TSP BBOB
Avg rank Avg %tness Avg rank Avg %tness

A 15.4 35580 41.3 1.609
B 80.2 35623 59.9 1.672
C 58.6 35610 54.8 1.646
D 12.9 35571 25.3 1.584

5.1.2 What to migrate? The choice of "What to migrate" signi%-
cantly impacted the results. The best-performing strategy was to
migrate the individual that maximizes the sum of normalized di-
versity increment and %tness (strategy D). This approach likely
balances exploration (through diversity enhancement) and exploita-
tion (through %tness maximization), leading to more e#ective mi-
gration. The classical strategy of migrating the %ttest individual
(strategy A) performed worse, as it prioritizes exploitation but may
overlook the need for maintaining diversity.

Strategies focusing solely on diversity (B and C) yielded signif-
icantly poorer outcomes. These strategies appear to neglect the
%tness dimension, which is crucial for guiding the search process,
and may result in the migration of less useful individuals that do
not contribute e#ectively to problem-solving.

Table 3: Average rank and "tness values for di!erent "Where
to migrate" strategies (see Sec. 3).

Where
variant

TSP BBOB
Avg rank Avg %tness Avg rank Avg %tness

Ring 12.9 35571 22.4 1.609
Clique 26.4 35588 31.3 1.605
Cycle 46.2 35605 49.3 1.649
Star 40.9 35600 41.6 1.649

5.1.3 Where to migrate? The topology of migration also played a
critical role. The Ring and Clique topologies consistently produced
superior results. The Ring topology likely bene%ts from its struc-
tured but limited communication, which allows diversity to propa-
gate without overwhelming convergence. The Clique topology, on
the other hand, enables direct interaction between all subpopula-
tions, facilitating rapid exchange of high-quality individuals.

In contrast, the Star and Cycle topologies underperformed. The
Star topology’s centralization may lead to bottlenecks, as all mi-
gration depends on a single central population. Similarly, the Cycle
topology’s rigid structure limits the $ow of information and diver-
sity, reducing its e#ectiveness compared to the more dynamic Ring
and Clique con%gurations.

Statistical analysis revealed that the di#erences between all strat-
egy pairs of "When to migrate", as well as "What to migrate" were
statistically signi%cant. However, no statistically signi%cant di#er-
ences were observed between the Ring and Clique topologies and

between the Cycle and Star topologies, though Ring and Clique
results were statistically signi%cantly better than Cycle and Star.

Given that the combination (6, D, Clique) demonstrated the best
performance, this con%guration is adopted for subsequent experi-
ments. The proposed method with this con%guration is henceforth
referred to as the Diversity-driven Cooperating Portfolio of
Metaheuristics (DdCPM) algorithm.

5.2 Hybridization
We evaluated the e#ectiveness of our hybridization approach, which
combines various metaheuristics, by comparing the performance
of the DdCPM algorithm with the following baselines:

(1) Pure ACO, GA, and PSO (using the same metaheuristic im-
plementations that were employed in the islands of DdCPM)
with a population size equal to the sum of all the island
populations in DdCPM.

(2) Island-based variants of these pure algorithms. In these vari-
ants, the con%gurations were identical to those used in Dd-
CPM, including the same number of islands, population sizes,
and migration strategies. However, all islands utilized the
same algorithm (either ACO, GA, or PSO) rather than the
heterogeneous approach.

(3) Island-based setup with heterogeneous algorithms, with two
islands per each of the ACO, GA, and PSO algorithms, like
in DdCMP setting, but without migration mechanism.

Detailed results, averaged over 20 independent runs, for each
of the TSP and BBOB problems are presented in Table 4. Rows 1-3
refer to a single-population setup, rows 4-6 to homogeneous islands
setup, row 7 to heterogeneous setup without migration, and the
last row refers to our method.

The results con%rm that DdCPM outperforms all competing
methods across all instances. In 21 out of 22 problem instances
(all except the easiest f2 BBOB function), the di#erences between
DdCPM and the remaining algorithms are statistically signi%cant.
This highlights the e#ectiveness of the hybridization approach,
which combines diverse metaheuristics to balance exploration and
exploitation more e#ectively than any single constituent algorithm
or its uniform island-based variant. The superior performance of
DdCPM demonstrates its ability to leverage the strengths of diverse
algorithms while mitigating their individual weaknesses. These
%ndings support the validity and practical advantages of the pro-
posed hybridization strategy.

5.3 Diversity vs "tness
The results presented in the previous section underscore the im-
portance of maintaining a balance between %tness and diversity,
particularly when selecting the individual to be migrated. The strat-
egy that combined diversity improvement and %tness achieved
signi%cantly better performance. The metric𝑉, used to determine
the individual for migration, was calculated as the sum of the nor-
malized diversity increment and %tness, both scaled to the [0,1]
interval. This ensured that both factors contributed equally to the
decision-making process.

However, this may not represent the optimal strategy, and it is
possible that one of these components should be given more weight
than the other. To investigate this, we propose using a weighted
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Table 4: Comparison of hybridizedmetaheuristics (DdCPM) with individual methods for TSP (top) and BBOB (bottom) instances.

TSP instance rd400 $417 pcb442 d493 att532 si535 u574 p654 d657 u724
ACO 15562 ±16 12094 ±11 51455 ±97 35487 ±67 28102 ±49 49113 ±81 37477 ±53 35141 ±41 49571 ±87 42495 ±47
GA 15531 ±54 12095 ±33 51426 ±161 35441 ±125 28112 ±84 49098 ±155 37360 ±141 35114 ±121 49541 ±110 42472 ±136
PSO 15561 ±27 12108 ±14 51416 ±90 35518 ±58 28101 ±27 49068 ±95 37412 ±53 35164 ±63 49560 ±93 42436 ±62
ACO islands 15522 ±23 12070 ±25 51419 ±106 35489 ±46 28095 ±47 49080 ±71 37377 ±54 35103 ±69 49578 ±86 42483 ±92
GA islands 15480 ±48 12039 ±31 51332 ±126 35418 ±83 28040 ±61 49013 ±134 37373 ±94 35030 ±80 49498 ±180 42380 ±91
PSO islands 15527 ±17 12069 ±16 51391 ±106 35498 ±48 28064 ±48 49078 ±55 37431 ±52 35130 ±68 49531 ±57 42506 ±107
ACO+GA+PSO 15576 ±53 12112 ±31 51488 ±158 35497 ±122 28147 ±83 49123 ±153 37418 ±137 35162 ±118 49592 ±109 42485 ±135
DdCPM 15448 ±23 11996 ±27 51294 ±107 35365 ±38 27987 ±29 48984 ±69 37305 ±87 35012 ±37 49418 ±62 42366 ±52

BBOB instance f2 f4 f6 f8 f10 f12 f14 f16 f18 f20 f22 f24
ACO 0.015 ±.000 1.558 ±.020 1.089 ±.010 2.228 ±.023 3.708 ±.067 5.046 ±.050 0.707 ±.008 0.859 ±.015 0.843 ±.010 1.613 ±.021 0.480 ±.006 1.492 ±.027
GA 0.015 ±.000 1.491 ±.053 1.050 ±.035 2.092 ±.067 3.571 ±.103 4.930 ±.181 0.739 ±.025 0.881 ±.026 0.790 ±.017 1.575 ±.038 0.466 ±.015 1.561 ±.052
PSO 0.015 ±.000 1.579 ±.024 1.060 ±.018 2.201 ±.042 3.447 ±.066 5.102 ±.071 0.720 ±.008 0.889 ±.015 0.833 ±.010 1.574 ±.024 0.466 ±.006 1.511 ±.019
ACO islands 0.015 ±.000 1.466 ±.019 1.008 ±.022 2.132 ±.040 3.466 ±.038 4.706 ±.088 0.699 ±.013 0.872 ±.018 0.817 ±.010 1.573 ±.029 0.487 ±.008 1.574 ±.028
GA islands 0.014 ±.000 1.457 ±.050 1.041 ±.028 2.058 ±.061 3.546 ±.124 4.993 ±.122 0.683 ±.018 0.859 ±.029 0.781 ±.026 1.514 ±.047 0.468 ±.018 1.488 ±.039
PSO islands 0.015 ±.000 1.528 ±.040 1.003 ±.018 2.017 ±.050 3.669 ±.071 5.007 ±.117 0.690 ±.010 0.887 ±.015 0.817 ±.012 1.509 ±.019 0.481 ±.011 1.492 ±.016
ACO+GA+PSO 0.016 ±.000 1.495 ±.051 1.053 ±.034 2.098 ±.065 3.580 ±.101 4.945 ±.178 0.741 ±.024 0.885 ±.025 0.792 ±.016 1.580 ±.037 0.468 ±.014 1.565 ±.050
DdCPM 0.014 ±.000 1.411 ±.023 0.927 ±.011 1.886 ±.036 3.229 ±.057 4.639 ±.108 0.653 ±.009 0.818 ±.011 0.777 ±.016 1.450 ±.024 0.444 ±.009 1.421 ±.026

sum of the two components. Speci%cally, we de%ne the metric as:

𝑉 = 𝑊𝑋 + (1 ↗ 𝑊)𝑌 , (2)

where 𝑋 represents the normalized diversity increment (as de-
%ned in Eq. 1), and𝑌 is the normalized %tness value. 𝑊 serves as a
steering parameter that controls the balance between diversity and
%tness in the selection process for migration. Table 5 presents the
results of the DDMS algorithm for various values of 𝑊 .

Table 5: Averaged results for the TSP and BBOB problems,
showing the impact of varying the balance parameter (𝑊)
between diversity and "tness in the selection of individuals
formigration (see Eq. 2).𝑊 = 0.5 refers to the results presented
in Table 4.

𝑓 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
TSP 35558 35360 35335 35410 35397 35459 35594 35618 35680 35705 35742
BBOB 1.668 1.432 1.437 1.456 1.442 1.484 1.581 1.614 1.676 1.733 1.789

The results presented in Table 5 reveal that the optimal balance
between diversity and %tness for the migration process is achieved
with 𝑊 = 0.2 for the TSP and 𝑊 = 0.1 for the BBOB problems.
Compared to the case of 𝑊 = 0.0 it can be seen that even a small
introduction of diversity into the migration process signi%cantly
improves the algorithm’s performance. This %nding highlights that,
while %tness remains crucial for guiding the search towards optimal
solutions, introducing diversity helps maintain a broader search
space, reducing the risk of premature convergence and improving
the algorithm’s robustness.

5.4 Adaptive migrations
Following the conclusion regarding the critical role of a careful bal-
ance between diversity and %tness in the migration process, in this
section, we propose three variants of adaptive migration strategies.
All of them dynamically adjust the balance between diversity and
%tness during the algorithm’s execution by a suitable adaptation of
parameter 𝑊 . The general intuition behind the need for adaptation
is to allow the algorithm to dynamically shift its focus between
exploitation and exploration throughout the search process. At

the start of the search, the population is typically diverse, and the
algorithm bene%ts from focusing on %tness to quickly converge
towards promising regions of the solution space. This is why, at the
beginning, we use smaller values of 𝑊 to prioritize %tness during mi-
gration. However, as the algorithm progresses and the population
becomes more homogeneous, there is a risk of stagnation. In such
cases, maintaining diversity becomes increasingly important to
prevent the algorithm from getting trapped in a local optima. This
is why, later in the search, 𝑊 is gradually increased, strengthening
the in$uence of diversity in the selection process for migration.

We propose the following three adaptive migration strategies:
a) Linearly decreasing 𝑊 with iterations

In the %rst variant, we set 𝑊 to decrease linearly over time, ac-
cording to the following formula:

𝑊 =
current iteration

total number of iterations
.

The total number of iterations can be easily computed based on
the number of islands, number of individuals in each island, and
the %tness function evaluation budget.

In the early stages, the algorithm focuses on improving %tness to
quickly converge towards promising regions of the search space. As
the number of iterations increases, 𝑊 decreases, shifting the balance
toward diversity and encouraging exploration when the population
is at risk of stagnating. This approach ensures that the migration
process initially promotes exploitation, but over time, the algorithm
becomes more exploratory, allowing it to avoid local optima.
b) Fitness stagnation-based adaptation

The second variant adapts𝑊 based on the %tness stagnation in the
population. Starting from 𝑊 = 0, 𝑊 is increased if no improvement
is observed for a certain number of iterations. Speci%cally, the
following formula is applied:

𝑊 = 𝑊 + 𝑍 if no improvement occurs for 𝑃𝑔 iterations,

where 𝑍 and 𝑃𝑔 are parameters controlling the rate of adaptation.
𝑍 determines the rate at which 𝑊 increases when stagnation is
detected, and 𝑃𝑒𝑉𝑂𝑄𝑃 controls how long the populationmust stagnate
before 𝑊 being adapted. In the experiments reported in the paper,
we set 𝑍 = 0.05 and 𝑃 = 10. The results for other selections of 𝑍 and
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Table 6: Comparison of di!erent migration adaptive strategies for TSP (top) and BBOB (bottom) instances.

TSP instance rd400 $417 pcb442 d493 att532 si535 u574 p654 d657 u724
𝑊 = 0.2 15408 ±18 11945 ±12 51159 ±57 35234 ±39 27845 ±32 48894 ±97 37244 ±65 34827 ±38 49285 ±49 42159 ±55
iterative decay 15319 ±27 11865 ±12 50813 ±68 35083 ±46 27739 ±51 48665 ±50 37077 ±52 34684 ±37 49138 ±59 42047 ±50
stagnation based 15359 ±21 11908 ±21 50872 ±51 35000 ±38 27746 ±51 48738 ±80 37146 ±49 34724 ±54 48991 ±50 41872 ±74
%tness based 15368 ±19 11875 ±18 50920 ±75 35103 ±40 27669 ±34 48600 ±90 37041 ±57 34612 ±48 49132 ±78 41948 ±60

BBOB instance f2 f4 f6 f8 f10 f12 f14 f16 f18 f20 f22 f24
𝑊 = 0.1 0.014 ±.000 1.392 ±.010 0.904 ±.005 1.857 ±.011 3.183 ±.045 4.459 ±.045 0.633 ±.005 0.801 ±.006 0.747 ±.007 1.428 ±.015 0.439 ±.005 1.404 ±.009
iterative decay 0.013 ±.000 1.350 ±.012 0.855 ±.007 1.728 ±.018 3.053 ±.020 4.359 ±.057 0.608 ±.004 0.771 ±.011 0.702 ±.007 1.377 ±.017 0.428 ±.004 1.313 ±.014
stagnation based 0.013 ±.000 1.349 ±.017 0.870 ±.009 1.789 ±.020 3.113 ±.022 4.322 ±.063 0.599 ±.004 0.773 ±.008 0.706 ±.008 1.340 ±.011 0.425 ±.003 1.316 ±.008
%tness based 0.013 ±.000 1.303 ±.008 0.885 ±.010 1.788 ±.024 3.022 ±.032 4.350 ±.038 0.609 ±.008 0.755 ±.005 0.722 ±.005 1.331 ±.019 0.415 ±.002 1.317 ±.017

𝑃𝑔 are presented in the supplementary material. On a general note,
the results were found to be relatively insensitive to the choice
of these parameters, meaning the strategy is robust to reasonable
variations in their values.

This strategy aims to dynamically adjust the migration process
based on the population’s behavior. When the population’s %tness
stagnates over a given number of iterations, it signals that the search
is becoming less e#ective, and the population may be converging
prematurely. Increasing 𝑊 enhances the role of diversity in the
migration process, helping to diversify the solutions and encourage
the exploration of new regions in the solution space.
c) Fitness ratio-based adaptation

The third variant adapts 𝑊 based on the relative %tness of the
population within the island and among neighboring islands. Specif-
ically, 𝑊 is calculated as follows:

𝑊 =
max %tnesslocal
max %tnessglobal

,

where max %tnesslocal refers to the maximum %tness value within
the population of the island to which an individual is to be mi-
grated, and max %tnessglobal refers to the maximum %tness among
individuals in neighboring islands from which migration can occur.

This strategy adjusts the migration parameter based on how the
island population’s %tness compares to the global %tness across
neighboring islands. If the local population has a relatively high
%tness compared to the global population, it suggests that the is-
land is well-converged, and migration should place more emphasis
on diversity to avoid stagnation. On the other hand, if the local
population %tness is low compared to the global %tness, it implies
that the island needs to focus more on %tness improvement, and
migration should prioritize individuals that strengthen the %tness.

Table 6 present results for the adaptation methods proposed
above. For the reference, we provide results for a %xed 𝑊 value (the
best selection from Table 5).

The results clearly demonstrate the superior performance of
the three adaptive migration methods over the %xed value of 𝑊
across all problem instances (in 61 out of 66 cases the di#erences
are statistically signi%cant). However, while all three adaptive meth-
ods show improved performance, the di#erences between them
are statistically insigni%cant. This suggests that the key factor in
achieving superior performance lies in the general ability to adjust
𝑊 in response to the current state of the solution process, rather
than the speci%c adaptation mechanism employed.

6 Conclusions
In this paper, we propose a novel hybrid optimization framework in
which diverse metaheuristics cooperate to e#ectively explore the
search space in the island-based setup. The proposed framework
successfully integrates multiple metaheuristic algorithms within
an island-based architecture, leveraging diversity-driven migration
strategies to enhance optimization process. By addressing the ques-
tions of when, what, and where to migrate, the framework achieves
a balance between exploration and exploitation, signi%cantly im-
proving solution quality across diverse optimization problems.

Extensive experiments on 22 instances of two popular problems:
TSP (discrete optimization) and BBOB (continuous optimization)
demonstrate the e&cacy of DdCPM in outperforming traditional
single-algorithm approaches, as well as conventional island-based
implementations.

It is important to highlight that our focus is not on competing
with the state-of-the-art optimization methods that are highly spe-
cialized and tailored to speci%c problem instances. Instead, our aim
is to propose a wide perspective of a general framework that inte-
grates various methods and demonstrate how this integration en-
hances the performance. The performed experiments indicate that
the use of a hybrid portfolio of metaheuristics allows the framework
to exploit the complementary strengths of di#erent algorithms, lead-
ing to superior convergence and robustness. The introduction of
adaptive migration strategies further enhances performance by
dynamically adjusting the balance between diversity and %tness
throughout the search process.

The %ndings highlight the importance of diversity as a corner-
stone of robust optimization, providing critical insights for future
research in hybrid metaheuristic frameworks. The scalability and
$exibility of DdCPM make it a promising tool for solving complex
optimization problems in both discrete and continuous domains.

Future work will focus on extending the framework to incorpo-
rate additional metaheuristics and problem types. We believe that
the continued development of hybrid metaheuristic frameworks
holds signi%cant potential for advancing the state-of-the-art in
optimization research.
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