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Abstract. This paper investigates the critical aspect of migration timing in hy-
brid island-based metaheuristic algorithms. Migration timing plays a pivotal role
in balancing exploration and exploitation, ensuring that the algorithm avoids pre-
mature convergence while effectively exploring the search space. We propose and
evaluate several migration timing strategies, including periodic migration, fitness-
based triggers, and diversity-driven approaches. Our experiments are conducted
on a set of benchmark optimization problems, including both discrete (Travel-
ing Salesman Problem) and continuous (Black-box Optimization Benchmarking)
tasks. The results demonstrate that adaptive migration strategies, which dynami-
cally adjust based on population diversity and fitness stagnation, outperform static
approaches. This study provides insights into the optimal conditions for triggering
migration and offers guidelines for designing more effective hybrid metaheuristic
frameworks.

Keywords: hybrid metaheuristic, island algorithm, migration strategy, distributed op-
timization

1 Introduction

Optimization algorithms are essential tools for solving complex problems in various do-
mains, including logistics, engineering, and artificial intelligence. Traditional optimiza-
tion methods, such as gradient-based approaches, often struggle with complex, high-
dimensional, and multimodal landscapes. Population-based metaheuristics, such as Ge-
netic Algorithms (GAs) [3], Particle Swarm Optimization (PSO) [7], or Ant Colony
Optimization (ACO) [4], have emerged as powerful tools for tackling these challenges.
These algorithms leverage a population of candidate solutions to explore the search
space, iteratively refining solutions through mechanisms inspired by natural or social
processes.

One strategy for improving the performance of population-based metaheuristics is
their multiplication. A common approach involves constructing a portfolio of distinct
algorithms that run in parallel [1, 13]. Another possibility consists in using a sequen-
tial process that adaptively selects a metaheuristics, suitable for the current state of the
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process, from a portfolio of diverse metaheuristics. A recent realization of this idea is
the Constrained Hybrid Metaheuristic (cHM) approach [8, 9]. Yet another widely used
approach is the island model [11], in which the global population is divided into sub-
populations (islands) that evolve independently. These islands periodically exchange
individuals through migration, facilitating the transfer of solutions between subpopu-
lations. This structure not only promotes diversity but also allows subpopulations to
specialize in different regions of the search space [19]. Previous studies (e.g. [10, 12])
demonstrate that the effectiveness of island-based models heavily depends on the mi-
gration strategy, particularly the timing of migration [18, 17].

The timing and frequency of migration in island-based models share similarities
with the communication frequency in co-evolutionary algorithms. In co-evolution, sub-
populations evolve independently but periodically exchange information to collabora-
tively solve complex problems. The optimal communication frequency in co-evolution
has been shown to significantly impact performance, with too frequent or too infrequent
communication leading to suboptimal results [14].

The timing of migration is crucial for balancing exploration (searching new areas
of the solution space) and exploitation (refining existing solutions) [16]. Migrating too
frequently can lead to premature convergence, where the subpopulations become too
similar and lose diversity. This can trap the algorithm in a local optimum and prevent it
from finding the global optimum. Conversely, infrequent migration can result in stagna-
tion, where the subpopulations evolve independently for too long, hindering the sharing
of beneficial solutions. This can slow down the optimization process and limit the qual-
ity of the final solution.

The most popular strategy for timing migration in island-based models is the use
of fixed intervals, where migration occurs at regular, predefined intervals regardless of
the population’s state. However, this approach may not always be optimal, as it fails to
adapt to the current performance of the optimization process. Furthermore, the optimal
migration timing usually varies throughout the optimization process. In this work, we
explore alternative migration timing strategies that are dynamically adjusted based on
population diversity and fitness stagnation. We aim to identify the conditions under
which the migration should occur in order to maximize the algorithm’s performance.

2 Proposed Solution

2.1 Baseline algorithm

The baseline solution for testing various migration strategies is the Diversity-driven
Cooperating Portfolio of Metaheuristics (DdCPM) framework, which we introduced
in [20]. DdCPM integrates multiple metaheuristic algorithms (GA, PSO, or ACO) in
an island-based setting. Each island employs a distinct metaheuristic to independently
explore the search space. Such a setup, not only promotes diversity but also enables sub-
populations to specialize in different regions of the search space, leveraging the com-
plementary strengths of different algorithms. Islands periodically exchange individuals
through migration, facilitating the transfer of solutions between subpopulations.

Employing distinct metaheuristics within each island reveals better the differences,
advantages, and disadvantages of individual migration strategies. The use of different



Migration Timing in Hybrid Island-Based Metaheuristic Algorithms 3

algorithms allows each population to evolve its unique characteristics, potentially boost-
ing the importance of migration compared to a more homogeneous environment.

Figure 1 and Algorithm 1 present an overview of the DdCPM baseline setup used
in the experiments. The DdCPM framework consists of N islands, with each island I
characterized by three attributes: Ipopulation - a set of nI individuals (candidate solutions);
Imetaheuristic - a specific metaheuristic algorithm used to evolve Ipopulation; Ineighbours - a
set of neighboring islands from which migration to I can occur.

In experiments, we used 6 islands, with 2 islands assigned to each metaheuristic
algorithm: GA, PSO, and ACO. The migration topology follows a clique structure,
meaning that every island is directly connected to all the others, allowing individuals to
migrate between any pair of islands. An individual selected for migration is determined
by a sum of its fitness and diversity contribution to the target island, both normalized
to [0,1]. Each island maintains a fixed population size of 100 individuals, and the total
budget for fitness function evaluation is set to 105 evaluations. Please refer to [20] for a
more detailed description of the DdCPM framework.

Fig. 1. Overview of the baseline DdCPM framework used for testing migration strategies. Pop-
ulations in multiple islands are developed by different metaheuristics, with migrations between
islands governed by certain migration triggers. A degree of shading indicates an individual’s fit-
ness value.

2.2 Migration timing strategies

At the core of population-based optimization algorithms are two fundamental driving
forces: fitness and diversity [5, 2]. Fitness refers to the quality of a solution, typically
measured by an objective function that the algorithm aims to optimize. High-fitness
solutions guide the search towards promising regions of the search space, enabling the
algorithm to exploit known good solutions. On the other hand, diversity refers to the
variety of solutions within the population. Maintaining diversity is crucial for exploring
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Algorithm 1 Pseudocode of the baseline DdCPM method.
1: for each island I ∈ I do
2: initialize Ipopulation with random individuals
3: end for
4: while evaluation_budget > 0 do
5: for each island I ∈ I do
6: if needs_migration(I) then
7: Ipopulation = Ipopulation∪ migrate_from(Ineighbours)
8: end if
9: end for

10: for each island I ∈ I do
11: Ipopulation = next_generation(Ipopulation, Imetaheuristic)
12: evaluate(Ipopulation)
13: evaluation_budget = evaluation_budget −|Ipopulation|

14: end for
15: end while
16: return the best individual from I

new regions of the search space, preventing the algorithm from getting trapped in local
optima.

We propose and evaluate 8 migration timing strategies (which we also refer to as
migration triggers) most of them based on the two above-described fitness and diver-
sity criteria. These strategies are designed to address the limitations of traditional ap-
proaches by dynamically adjusting migration timing based on the current state of the
population. This allows for a more nuanced balance between exploration and exploita-
tion, as opposed to static or randomized strategies that do not consider population health
indicators.

T1: Periodic migration. In this baseline strategy, migration occurs at fixed intervals
of m iterations, regardless of the state of the population. This is the most common ap-
proach in the literature and serves as a reference point for comparing more sophisticated
strategies.

T2: Randomized. Migration occurs in each generation with a fixed probability of m%.
This stochastic approach reduces the likelihood of predictable migration patterns, pro-
moting diversity and serving as a baseline for comparing other migration strategies.

T3: Average fitness stagnation. Migration is triggered when the average fitness of the
population on an island does not improve for m consecutive iterations. This strategy
aims to detect cases where the population has converged prematurely to a local opti-
mum.

T4: Maximum fitness stagnation. Migration occurs if the best fitness value (maximum
fitness) within an island’s population does not improve for m iterations. This strategy
focuses on identifying stagnation in achieving higher-quality solutions.
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T5: Combined fitness stagnation. This strategy combines the previous two criteria.
Migration is triggered when neither the average fitness nor the maximum fitness shows
improvement over m iterations.

T6: Diversity stagnation. Migration is executed if the diversity within an island’s pop-
ulation does not improve for m iterations. This strategy aims to introduce new genetic
material and avoid premature convergence.

We measure diversity by calculating the average of the standard deviations across
all problem dimensions. For each dimension of the solution encoding vectors, we com-
pute the standard deviation and then average these values. Formally, given a popula-
tion I = {i1, i2, . . . , in} and the solution vector for individual ik ∈ I, represented as
xik = [xik

1 , x
ik
2 , . . . , x

ik
D], the diversity is defined as:

1
D

D∑
d=1

σ({xi1
d , x

i2
d , . . . , x
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d }), (1)

where σ({xi1
d , x

i2
d , . . . , x

in
d }) denotes the standard deviation of the values in dimension

d ∈ {1, . . . ,D} across all individuals in the population.

T7: Combined fitness and diversity stagnation. This hybrid strategy combines the
conditions of T3 and T5. Migration occurs if either the average and maximum fitness
fail to improve or population diversity stagnates for m iterations. This approach aims to
simultaneously address both fitness stagnation and the lack of diversity.

T8: Sum of normalized fitness and diversity stagnation. Migration is triggered when
the normalized sum of fitness and diversity remains unchanged for m consecutive it-
erations. Both metrics are scaled to [0, 1] to balance solution quality and population
diversity.

In all cases except T1, migrations are executed asynchronously. This means that a
specific condition is checked for each island individually, and if the condition is met,
migration to that island is triggered. As a result, the timing and frequency of migrations
between islands may vary.

In each case, the individual selected for migration is the one with the highest sum
of normalized fitness and normalized diversity. Specifically, for fitness, the best value
(lowest in minimization problems and highest in maximization problems) is mapped to
1, while the worst is mapped to 0. Similarly, the diversity component is normalized such
that the highest potential increase in diversity within the target population is mapped to
1, and the lowest to 0.

The selection of the migrated individual is made within populations of all islands
that are connected to the destination island. In the case of a clique topology, where all
islands are interconnected, the migration can potentially be performed from any island
other than the target one.
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3 Results

3.1 Experimental setup

We evaluated the proposed migration timing strategies on two benchmark problem do-
mains: the Traveling Salesman Problem (TSP) and the Black-box Optimization Bench-
marking (BBOB) framework. The selection of TSP and BBOB as benchmark domains
ensures the evaluation of the proposed strategies across both discrete and continuous
optimization landscapes. For TSP, we used 10 instances from the TSPLIB library [15],
with the number of cities ranging from 400 to 724. For BBOB, we used 12 problem
instances from the COCO platform [6], covering a diverse range of function properties,
including unimodal, multimodal, and composite functions. The number of dimensions
for all functions was set to 20. All experiments were conducted independently 20 times
using different random seeds. The results presented are averaged across these runs, and
standard deviations are provided to indicate the variability in performance. Tests were
run on an Intel Xeon Silver 4116 @ 2.10GHz with 256GB RAM.

3.2 Migration frequency and m parameter

Tables 1 and 3 present the average results across all tested problem instances for various
values of parameter m for each timing migration strategy (T1-T8).

Table 1. Averaged results for various m values for different migration timing strategies (see Sec-
tion 2.2.) for TSP problems. The best results for each strategy are bolded. The best overall result
is shaded .

Migration timing strategy
m T1 T2 T3 T4 T5 T6 T7 T8
1 36205 ± 47 36536 ± 59 35832 ± 88 35758 ± 60 35683 ± 55 35671 ± 70 35646 ± 67 35716 ± 94

2 36193 ± 81 36211 ± 53 35857 ± 67 35745 ± 64 35671 ± 79 35696 ± 58 35634 ± 94 35661 ± 72

5 36168 ± 56 35894 ± 64 35944 ± 92 35721 ± 78 35621 ± 90 35745 ± 52 35547 ± 79 35644 ± 81

10 36093 ± 76 35625 ± 47 36019 ± 89 35621 ± 66 35559 ± 59 35820 ± 53 35547 ± 65 35619 ± 85

15 35634 ± 70 35866 ± 58 36056 ± 50 35721 ± 71 35708 ± 80 35795 ± 75 35658 ± 90 35715 ± 68

20 35857 ± 91 36170 ± 61 36081 ± 80 35758 ± 93 35708 ± 55 35894 ± 47 35683 ± 88 35765 ± 79

25 36118 ± 67 36182 ± 73 36106 ± 54 35770 ± 68 35708 ± 69 35857 ± 78 35696 ± 60 35714 ± 84

30 36180 ± 60 36248 ± 57 36106 ± 76 35783 ± 91 35721 ± 61 35919 ± 69 35696 ± 65 35816 ± 81

50 36242 ± 81 36286 ± 64 36143 ± 93 35783 ± 54 35733 ± 88 35919 ± 55 35708 ± 80 35778 ± 92

The optimal value of m varies depending on the migration strategy. For example, T3
and T6, which migrate based solely on the average fitness and diversity, respectively,
perform best for m = 1. This is likely because these metrics tend to decrease rapidly in
the early stages of the optimization process, and larger values of m result in migrations
occurring too infrequently. This observation is supported by Tables 2 and 4, which show
the migration frequency for different values of m. For T3 and T6, even with very small
values of m, the migration frequency exceeds 25 generations, indicating the specified
conditions for migration are rarely met.



Migration Timing in Hybrid Island-Based Metaheuristic Algorithms 7

Table 2. Averaged frequency of migrations for various m values for different migration timing
strategies (described in Section 2.2.) for the TSP problems.

Migration timing strategy
m T1 T2 T3 T4 T5 T6 T7 T8
1 1.0 98.2 26.3 9.0 10.9 32.4 9.5 9.2
2 2.0 49.5 26.9 10.1 12.1 33.3 10.9 10.4
5 5.0 19.8 30.2 12.2 13.8 37.0 13.6 14.3
10 10.0 9.9 35.4 18.8 19.0 45.5 20.3 20.2
15 15.0 6.7 40.4 21.7 27.2 42.0 26.7 25.5
20 20.0 5.0 46.9 24.9 29.0 63.0 30.5 30.5
25 25.0 4.0 51.9 33.2 31.0 51.5 35.1 36.8
30 30.0 3.4 55.0 43.5 41.0 79.0 43.8 42.4
50 50.0 2.0 75.0 57.9 66.5 74.3 51.0 51.8

Table 3. Averaged results for various m parameter values for different migration timing strategies
(see Section 2.2.) for BBOB problems. The best results for each strategy are bolded. The best
overall result is shaded .

Migration timing strategy
m T1 T2 T3 T4 T5 T6 T7 T8
1 2.808 ± .12 2.871 ± .09 2.830 ± .11 1.605 ± .05 1.716 ± .07 2.585 ± .10 1.515 ± .04 1.580 ± .06

2 2.808 ± .11 2.792 ± .08 2.875 ± .12 1.605 ± .06 1.716 ± .08 2.607 ± .09 1.515 ± .05 1.529 ± .07

5 2.786 ± .10 2.690 ± .07 2.986 ± .13 1.582 ± .05 1.659 ± .06 2.674 ± .11 1.493 ± .04 1.509 ± .05

10 2.697 ± .09 2.241 ± .06 3.075 ± .14 1.560 ± .04 1.649 ± .07 2.674 ± .10 1.449 ± .03 1.497 ± .05

15 2.229 ± .08 2.452 ± .07 3.120 ± .15 1.605 ± .05 1.716 ± .08 2.741 ± .12 1.515 ± .04 1.553 ± .06

20 2.451 ± .10 2.721 ± .09 3.142 ± .16 1.605 ± .06 1.738 ± .07 2.741 ± .11 1.515 ± .05 1.579 ± .07

25 2.719 ± .11 2.808 ± .10 3.165 ± .17 1.627 ± .05 1.738 ± .08 2.786 ± .13 1.519 ± .04 1.563 ± .06

30 2.786 ± .12 2.854 ± .11 3.187 ± .18 1.627 ± .06 1.738 ± .09 2.741 ± .14 1.525 ± .05 1.601 ± .07

50 2.853 ± .13 2.872 ± .12 3.231 ± .19 1.627 ± .07 1.738 ± .10 2.808 ± .15 1.522 ± .06 1.537 ± .08

For all other strategies, the optimal tested value of m belongs to {5, 10, 15}. Notably,
for the majority of migration strategies, the optimal m value (in terms of the best results
from Tables 1 and 3) corresponds to a similar migration frequency, ranging between
approximately 10 and 20 generations. This finding suggests that there is a “sweet spot”
for migration frequency that effectively balances exploration and exploitation. Migrat-
ing too frequently can lead to premature convergence, as the islands may homogenize
and lose diversity. Conversely, migrating too rarely can result in stagnation, as the is-
lands are unable to share beneficial solutions with one another.

The optimal migration frequency strikes a balance between these two extremes,
facilitating both the exploration of new solutions and the exploitation of existing ones.
A similar conclusion has been drawn in [14] regarding co-evolutionary algorithms.

3.3 Performance of migration strategies

Tables 5 and 6 present detailed performance results of the tested migration timing strate-
gies for all evaluated TSP and BBOB instances, resp. For each strategy, the optimal m
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Table 4. Averaged frequency of migrations for various m values for different migration timing
strategies (described in Section 2.2.) for the BBOB problems.

Migration timing strategy
m T1 T2 T3 T4 T5 T6 T7 T8
1 1.0 99.7 25.9 9.1 10.5 31.9 9.8 9.8
2 2.0 49.8 27.0 10.3 12.0 33.5 10.4 10.4
5 5.0 20.0 29.9 12.8 15.3 38.6 14.7 14.3
10 10.0 9.9 35.0 19.4 19.0 38.8 19.8 18.9
15 15.0 6.6 41.0 24.9 22.6 50.6 21.4 20.7
20 20.0 5.0 43.8 26.4 27.2 52.4 24.8 25.5
25 25.0 4.0 49.4 35.0 39.6 68.7 30.1 29.2
30 30.0 3.3 52.5 35.3 40.0 72.8 34.0 32.9
50 50.0 2.0 74.4 55.1 59.2 81.7 59.4 60.0

value, determined based on the analysis presented in the previous section, was em-
ployed.

Table 5. Detailed results for tested TSP instances for different migration timing strategies. The
best results for each instance are bolded.

Migration timing strategy
Instance T1 T2 T3 T4 T5 T6 T7 T8

rd400 15557 ± 87 15549 ± 92 15631 ± 105 15544 ± 78 15486 ± 95 15594 ± 89 15485 ± 83 15535 ± 102

fl417 12108 ± 76 12087 ± 81 12222 ± 98 12085 ± 72 12036 ± 88 12113 ± 84 12025 ± 79 12084 ± 91

pcb442 51420 ± 112 51434 ± 105 51576 ± 117 51406 ± 98 51375 ± 110 51494 ± 107 51333 ± 102 51395 ± 115

d493 35497 ± 95 35468 ± 89 35783 ± 110 35478 ± 92 35406 ± 97 35525 ± 101 35413 ± 88 35474 ± 104

att532 28111 ± 82 28080 ± 78 28281 ± 99 28083 ± 85 28027 ± 91 28155 ± 87 28005 ± 84 28088 ± 96

si535 49069 ± 108 49083 ± 112 49177 ± 119 49054 ± 105 48994 ± 115 49081 ± 110 49006 ± 107 49060 ± 118

u574 37425 ± 97 37418 ± 92 37529 ± 110 37405 ± 94 37338 ± 99 37425 ± 101 37323 ± 96 37427 ± 108

p654 35116 ± 89 35119 ± 85 35474 ± 105 35104 ± 91 35068 ± 93 35169 ± 97 35044 ± 88 35114 ± 102

d657 49552 ± 110 49545 ± 108 49752 ± 120 49516 ± 112 49467 ± 115 49556 ± 118 49441 ± 107 49526 ± 119

u724 42485 ± 102 42469 ± 98 42895 ± 111 42446 ± 105 42398 ± 110 42593 ± 112 42394 ± 108 42489 ± 115

Strategy T7, relying on the combined stagnation of fitness and diversity, yielded
superior performance across the majority of tested instances. Statistically significant
improvement (according to paired t-test with p-value ≤ 0.05) was observed for T7
compared to all other strategies in 5 out of 10 TSP instances and 7 out of 12 BBOB
functions. Conversely, no other strategy demonstrated statistically significant superior-
ity over T7 in any instance. These results underscore the efficacy of the combined fitness
and diversity stagnation criterion for triggering migration. This likely stems from the
fact that both fitness stagnation (indicating the lack of promising new individuals) and
diversity stagnation (indicating the lack of exploration of the search space) serve as
valuable indicators for migration. Relying on only one of these criteria appears to be
suboptimal.

Strategy T4 (maximum fitness stagnation) and strategy T8 (normalized sum of
fitness and diversity stagnations) yielded slightly lower, yet still competitive, perfor-
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Table 6. Detailed results for tested BBOB functions for different migration timing strategies. The
best results for each function are bolded.

Migration timing strategy
Function T1 T2 T3 T4 T5 T6 T7 T8

f2 0.015 ± .001 0.015 ± .002 0.015 ± .001 0.014 ± .001 0.015 ± .001 0.015 ± .001 0.014 ± .001 0.015 ± .001

f4 1.712 ± .150 1.580 ± .140 2.253 ± .200 1.501 ± .130 1.568 ± .135 2.051 ± .180 1.411 ± .125 1.509 ± .132

f6 1.315 ± .120 1.264 ± .115 1.341 ± .125 1.031 ± .095 1.019 ± .090 1.226 ± .110 0.927 ± .085 1.000 ± .092

f8 2.721 ± .250 2.602 ± .240 3.772 ± .350 2.023 ± .180 2.150 ± .190 3.520 ± .320 1.886 ± .170 1.921 ± .175

f10 6.098 ± .550 5.605 ± .500 5.786 ± .520 3.373 ± .300 3.741 ± .330 5.465 ± .490 3.229 ± .290 3.439 ± .310

f12 7.447 ± .670 7.357 ± .660 9.904 ± .620 5.005 ± .450 5.092 ± .460 10.085 ± .902 4.639 ± .420 4.673 ± .425

f14 0.816 ± .075 0.815 ± .074 1.059 ± .095 0.702 ± .065 0.742 ± .068 0.966 ± .088 0.653 ± .060 0.689 ± .063

f16 1.099 ± .100 1.007 ± .092 1.248 ± .115 0.873 ± .080 0.913 ± .083 1.190 ± .110 0.818 ± .075 0.810 ± .074

f18 1.337 ± .120 1.318 ± .118 1.630 ± .150 0.806 ± .070 0.840 ± .075 1.610 ± .145 0.777 ± .068 0.769 ± .067

f20 1.812 ± .165 1.806 ± .163 2.259 ± .200 1.521 ± .140 1.593 ± .145 2.104 ± .190 1.450 ± .135 1.458 ± .136

f22 0.818 ± .075 0.758 ± .070 0.971 ± .090 0.471 ± .045 0.499 ± .048 0.875 ± .080 0.444 ± .042 0.457 ± .043

f24 1.947 ± .175 1.783 ± .160 2.138 ± .190 1.439 ± .130 1.522 ± .135 1.979 ± .180 1.421 ± .128 1.438 ± .130

mance. The performance of T8 further supports the benefits of incorporating both fit-
ness and diversity into the migration trigger. The relatively strong performance of T4
suggests that maximum fitness stagnation is also a useful indicator, likely because it
reflects a point in the search where the population has converged to a local optimum
and further exploration is needed.

Strategies employing solely diversity (T6) or average fitness (T3) as migration cri-
teria exhibited significantly weaker performance. This observation, consistent with the
findings presented in Section 3.2, reinforces the conclusion that these individual metrics
lead to insufficiently frequent migrations.

The traditional approach of employing a fixed migration interval (T1), commonly
found in the literature, outperformed T3 and T6, but performed significantly worse than
the other adaptive strategies, particularly T7. The performance of the randomized mi-
gration strategy (T2) was comparable to that of T1. This similarity likely arises from
the fact that neither approach incorporates information about the population’s state or
behavior to inform the migration timing, thereby triggering migrations independently
of any emergent population dynamics.

3.4 Computation overhead

Table 7 presents the average computation time for different migration strategies (with
the optimal m value set according to experiments discussed in Section 3.2). The compu-
tational cost of monitoring fitness and diversity for adaptive migration timing is signif-
icantly smaller compared to the cost of fitness function evaluations. Fitness stagnation
checks involve simple comparisons, while diversity tracking requires standard deviation
calculations, both of which are lightweight operations.

In our experiments, the time spent on these monitoring tasks was significantly
smaller than the time required for fitness evaluations. Thus, the minor overhead in-
troduced by adaptive strategies does not impact the overall time efficiency.
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Table 7. Average computational time (in sec) for different migration strategies.

Migration timing strategy
Problem T1 T2 T3 T4 T5 T6 T7 T8

TSP 45.2 ± 0.8 46.1 ± 0.9 47.5 ± 1.0 47.0 ± 0.9 48.3 ± 1.1 48.9 ± 1.2 49.8 ± 1.3 49.2 ± 1.2

BBOB 62.8 ± 1.1 63.5 ± 1.2 65.4 ± 1.3 64.7 ± 1.2 66.1 ± 1.4 66.9 ± 1.5 68.0 ± 1.6 67.3 ± 1.5

4 Conclusions

This study explores the critical role of migration timing in hybrid island-based meta-
heuristic algorithms. We propose and evaluate various migration strategies, includ-
ing periodic, randomized, fitness-based, diversity-driven, and combined approaches, to
identify optimal methods to balance exploration and exploitation.

Our findings show that adaptive migration strategies, particularly those that combine
fitness and diversity metrics, outperform static methods. Traditional approaches, such
as fixed-interval migration and randomized migration, while simpler to implement, lack
the adaptability needed to respond to changes in population dynamics. In contrast, adap-
tive strategies dynamically adjust migration timing based on multiple population health
indicators, leading to more effective exploration and exploitation. This highlights the
importance of dynamic, context-aware migration. These findings align with the obser-
vations made regarding co-evolutionary algorithms, where the frequency of communi-
cation among subpopulations has been shown to significantly impact performance [14].
This suggests that insights from one area can guide the design of optimization frame-
works in the other, highlighting the broader applicability of migration timing strategies
in distributed optimization.

Future work will focus on extending the set of metaheuristic algorithms and diverse
problem types tested within the DdCPM framework. We also plan to investigate the
impact of varying the number of islands and utilizing other island topologies (such as
ring or star structures) on the performance of the migration strategies.
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