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Abstract

The optimization of complex problems remains a significant challenge across various domains of science and engineering. This
paper introduces a novel approach to island-based optimization that dynamically adapts metaheuristic selection during runtime,
extending the Diversity-driven Cooperating Portfolio of Metaheuristics (DdCPM) framework. Our method integrates additional
metaheuristics beyond the original implementation and proposes adaptation strategies that dynamically reconfigure the algorithm
portfolio based on performance indicators and population characteristics. Experimental results across both discrete and continuous
optimization benchmarks demonstrate that adaptive metaheuristic selection enhances solution quality and convergence rates com-
pared to static approaches. The proposed framework represents an advancement in hybrid optimization systems, offering improved
performance through intelligent adaptation mechanisms that correspond to the evolving state of the search process.
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1. Introduction

Optimization problems are a key part of many real-world challenges, such as optimizing energy consumption in
smart grids [2], financial portfolio optimization [31], traffic flow management [14], vehicle routing [21, 22], schedul-
ing [37], or designing efficient manufacturing processes [38]. These problems are particularly challenging due to
high dimensionality, non-smooth objectives, and complex constraints. Traditional methods often struggle with these
difficulties, leading to the development of population-based metaheuristics as powerful and flexible alternatives.

Population-based metaheuristics employ a collection of candidate solutions to search the problem space, sometimes
using mechanisms inspired by natural processes. Over the decades, researchers have developed numerous metaheuris-
tic algorithms [26], each with its own strengths and weaknesses. For example Genetic Algorithms (GA) [5] excel at
global exploration but may struggle with fine-tuning the solutions. Particle Swarm Optimization (PSO) [16] offers fast
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convergence but is susceptible to premature convergence in complex landscapes. Ant Colony Optimization (ACO) [7]
demonstrates effectiveness in discrete optimization problems but can be computationally intensive. Differential Evo-
lution (DE) [32] provides robust performance for continuous optimization but may require careful parameter tuning.
Simulated Annealing (SA) algorithms [36] offer a good balance between exploration and exploitation but may con-
verge slower than other methods.

The complementary nature of these algorithms has motivated research into hybrid approaches that leverage mul-
tiple metaheuristics simultaneously. Island-based models represent a prominent paradigm for such hybridization. In
island-based evolutionary algorithms [39], the population is divided into subpopulations (islands), each evolving in-
dependently with periodic migration of individuals between islands. This structure maintains diversity across the
population and allows subpopulations to specialize in different regions of the search space.

Recent advancements in island-based optimization have focused on heterogeneous models where different islands
employ distinct metaheuristics. The Diversity-driven Cooperating Portfolio of Metaheuristics (DdCPM) [41] repre-
sents a contribution in this domain by incorporating an adaptive diversity-driven migration mechanism that manages
the information flow between islands running different metaheuristics. DdCPM demonstrates superior performance
compared to both single-algorithm implementations and homogeneous island-based variants across diverse optimiza-
tion problems.

Motivation. While heterogeneous island-based models like DdCPM show promising results, they typically employ
a static assignment of metaheuristics to islands throughout the optimization process. This fixed assignment fails to
account for the dynamic nature of optimization problems, where different algorithms may perform better at different
stages of the search or in different regions of the solution space. The effectiveness of metaheuristics can vary sig-
nificantly as the search progresses: some algorithms excel at exploration during early stages, while others are more
effective at exploitation during later stages.

The performance of island-based models is highly dependent on the migration strategy employed. While DdCPM
addressed fundamental questions regarding when, what, and where to migrate, it did not explore the question of
how to adapt the metaheuristic portfolio itself. Given that different problems and even different stages of solving the
same problem may benefit from different metaheuristic configurations, there is a clear need for mechanisms that can
dynamically adjust the metaheuristic portfolio based on performance feedback.

These limitations motivate our research into adaptive metaheuristic selection for island-based optimization. By
developing methods to dynamically decide which metaheuristic operates on which island during the algorithm’s exe-
cution, we aim to create a more responsive and more effective optimization framework that can adapt to the specific
characteristics of the problem being solved and to the changing landscape as the search progresses.

Contribution. The key contributions of the paper are as follows:
- Dynamic metaheuristic adaptation. We propose novel strategies for adaptive metaheuristic selection that enable
the algorithm to dynamically reconfigure the assignment of metaheuristics to islands during runtime. We present 3
strategies for selecting islands for metaheuristic replacement and 4 strategies for choosing a metaheuristic to replace
the current one on a given island.
- Extended metaheuristic portfolio. We expand the DdCPM framework by incorporating additional metaheuristics,
specifically Differential Evolution (DE) and Simulated Annealing (SA) algorithms, creating a more diverse portfolio
of optimization methods. We conduct extensive experiments to evaluate different island configurations and meta-
heuristic combinations, identifying optimal setups.
- Extensive empirical evaluation. We validate our approach through comprehensive experiments on two distinct
problem domains: the Black Box Optimization Benchmarking (BBOB) suite for continuous optimization and Travel-
ing Salesman Problem (TSP) instances for discrete optimization.

2. Related Work

Island-based optimization algorithms have emerged as an effective approach for tackling complex optimization
problems by maintaining multiple subpopulations (islands) that evolve independently and periodically exchange in-
formation through migration mechanisms. Early studies on island models primarily focused on genetic algorithms
(GAs). Whitley et al. [39] analyzed the impact of separability, population size, and convergence properties in island
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model genetic algorithms, highlighting their potential to maintain diversity and improve convergence rates. Alba and
Tomassini [3] provided a comprehensive overview of parallelism in evolutionary algorithms, emphasizing the advan-
tages of island-based models in terms of scalability and performance enhancement. Harada and Alba [12] surveyed
parallel genetic algorithms, discussing various migration strategies and their influence on algorithm effectiveness.
Other studies have shown that carefully chosen migration conditions such as migration sizes [30], migration tim-
ing [43], or migrants selection [42] significantly influence the final results of island-based models.

Adaptive metaheuristic selection has increasingly gained attention as a promising direction to improve optimization
outcomes dynamically. Akay et al. [1] empirically studied parallel population-based algorithm portfolios, showing that
adaptive selection mechanisms significantly outperform static configurations by dynamically responding to chang-
ing problem characteristics. Similarly, distributed adaptive frameworks have been developed to effectively coordi-
nate metaheuristics across multiple computational nodes. The Distributed Adaptive Metaheuristic Selection (DAMS)
framework [6] employs a three-layer architecture allowing nodes to autonomously decide on local information ex-
change and algorithm application during optimization. The GAPSO [35] and M-GAPSO [25] methods utilize DE,
different PSO variants, and local search techniques and propose the concept of information sharing between algo-
rithms. Thanks to knowing each other positions and best-so-far solutions, the algorithms can coordinate their search
directions and explore the search space more effectively. [15] proposed a new model based on the fitness cloud, lead-
ing to theoretical and empirical insights on when an online adaptive strategy can be beneficial. A constrained hybrid
metaheuristic algorithm (cHM) has been proposed in [18] with application to Probabilistic Neural Networks learning.

The Diversity-driven Cooperating Portfolio of Metaheuristics (DdCPM), recently introduced by Żychowski et al.
[41], advances heterogeneous island-based optimization frameworks by incorporating diversity-driven migration
mechanisms that adaptively manage information flow between islands running distinct metaheuristics. Despite its
demonstrated superiority over homogeneous approaches, DdCPM maintains static metaheuristic assignments through-
out its execution.

This limitation motivates our research into adaptive metaheuristic selection strategies that dynamically modify
metaheuristic-to-island assignment during runtime based on performance indicators and population characteristics.
The work extends the existing literature by introducing adaptive metaheuristic selection specifically designed for
island-based optimization.

3. Adaptive Metaheuristic Selection in Island-Based Optimization

In this section, we first summarize the baseline Diversity-driven Cooperating Portfolio of Metaheuristics (Dd-
CPM) [41] framework, and then introduce the proposed adaptation strategies that dynamically modify the meta-
heuristic configuration during runtime.

3.1. Baseline Solution

The DdCPM framework is a hybrid island-based optimization approach that cooperatively combines multiple meta-
heuristic algorithms. The method considers a set of ni islands, each running a distinct metaheuristic algorithm to evolve
its subpopulation. These islands periodically exchange individuals through migration mechanisms, fostering collabo-
ration between different optimization strategies.

Each island I within the set of islands has three primary attributes: Ipopulation, representing the set of candidate
solutions (individuals) on the island; Imetaheuristic, specifying the algorithm used to evolve the population; and Ineighbors,
defining the set of neighboring islands from which migration can occur.

Migration plays a crucial role in the effectiveness of DdCPM, as it enables cooperation between islands running
different metaheuristics. DdCPM addresses three fundamental aspects of migration: when to migrate, what to migrate,
and where to migrate. The extensive empirical analysis demonstrated that the optimal configuration combines: (1)
triggering migration when either fitness metrics stagnate or diversity fails to increase; (2) selecting individuals for
migration based on a weighted combination of fitness and diversity contribution; and (3) implementing either a ring
or clique topology for inter-island connections. This configuration demonstrated superior performance compared to
single-algorithm implementations and homogeneous island-based variants across diverse optimization problems. We
use DdCPM as the baseline framework for our modifications.
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The baseline DdCPM implementation contains three widely recognized metaheuristic algorithms: Genetic Algo-
rithms (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO). In this paper we incorporate
two additional metaheuristics into the portfolio - Differential Evolution (DE) and population-based version of Sim-
ulated Annealing (SA) [13, 4]. The selection of metaheuristics was based on their popularity — the five chosen
metaheuristics were the most frequently cited as of December 31, 2022 [26].

3.2. Adaptation Methods

While the baseline DdCPM implementation demonstrates the effectiveness of cooperating metaheuristics in an
island-based model, it employs a static assignment of algorithms to islands throughout the optimization process. Our
adaptation strategies extend this framework by introducing dynamic reassignment of metaheuristics during runtime,
corresponding to the evolving state of the search process. The adaptation process involves three key components: a)
determining which island should have its metaheuristic replaced (island selection), b) deciding which metaheuristic
should replace the current one (algorithm replacement), and c) establishing when this adaptation should occur.

a) Island Selection Strategies – We propose three strategies for selecting the island for metaheuristic replacement:
A. Random Island Selection (Random): This strategy randomly selects an island for metaheuristic replacement,

introducing stochasticity into the adaptation process. This approach prevents deterministic biases and provides a base-
line for comparison with more sophisticated selection methods. Random selection allows for the potential discovery
of beneficial algorithm-problem matchings that might not be apparent from the performance metrics alone.

B. Weakest Performance Island (Weakest): This strategy identifies the island with the lowest average fitness of
its top K individuals. By targeting the weakest-performing island for the algorithm reassignment, we aim to improve
regions of the search space where the current metaheuristic is underperforming. Parameter K can be adjusted, with
smaller values emphasizing elite performance and larger ones considering broader population quality.

C. Similarity-Based Selection (Similar): This strategy identifies the island whose population is most similar to
populations on other islands. For each individual on an island, we find the closest individual (by means of a solution
encoding distance) among all other islands, then average these minimum distances to compute a similarity score. The
island with the lowest score (highest similarity) becomes a candidate for a metaheuristic replacement. The intuition
is that islands with highly similar populations to others might benefit most from metaheuristic diversification, as they
may be exploring redundant regions of the search space.

b) Algorithm Replacement Strategies – Once an island is selected for adaptation, we implement one of four strate-
gies to determine which metaheuristic should replace the current one:

1. Random Algorithm Selection (Random): This strategy randomly selects a metaheuristic from the available
portfolio (excluding the current one on the island). This approach provides a baseline comparison for more sophisti-
cated selection methods and enables a wider exploration of algorithm-problem pairings.

2. Best Individual Algorithm (Best): This strategy adopts the metaheuristic that is currently employed on the
island which contains the overall best individual. The rationale is to replicate successful metaheuristics, i.e., leverage
the metaheuristic that has demonstrated superior performance in finding high-quality solutions.

3. Highest Average Fitness Algorithm (Avg Fitness): This strategy selects the metaheuristic from the island with
the highest average population fitness. Unlike the previous strategy that focuses on elite performance, this approach
considers the overall quality of solutions generated by different algorithms, potentially favoring metaheuristics that
maintain a consistently high-performing population rather than those that find isolated exceptional solutions.

4. Upper Confidence Bound Algorithm Selection (UCB): This strategy applies principles from the multi-armed
bandit problem [20] in algorithm selection. Each metaheuristic is assigned a score based on its historical performance
and the uncertainty associated with that performance estimate. The UCB [17] approach assigns a score to each avail-
able metaheuristic algorithm using the following formula:

UCBi(t) = µ̂i(t) +C

√
ln(t)
Ni(t)

(1)
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where: UCBi(t) is the upper confidence bound of the score for metaheuristic i at iteration t; µ̂i(t) is the estimated perfor-
mance up to iteration t (the average fitness improvement of metaheuristic i); Ni(t) is the number of times metaheuristic
i has been selected up to iteration t; C is a parameter that controls the exploration-exploitation trade-off.

The first term, µ̂i(t), represents the exploitation component, favoring algorithms that have demonstrated strong per-
formance in previous iterations. Specifically, µ̂i(t) = 1

Ni(t)
∑Ni(t)

s=1 ri(s) where ri(s) is the reward (fitness improvement)

observed when metaheuristic i was applied in selection s. The second term, C
√

ln(t)
Ni(t)

, represents the exploration com-
ponent. It is higher for metaheuristics that have been selected less frequently (smaller Ni(t)) and generally grows as the
total number of iterations increases. Parameter C controls the balance between exploration and exploitation: higher
values of C place more emphasis on exploration, while lower values focus more on exploitation. UCB is also the main
selection mechanism in the popular Monte Carlo Tree Search algorithm [33].

During the adaptive process, when an island is selected for algorithm replacement, the UCB score (eq. 1) is cal-
culated for each available metaheuristic (excluding the one currently used on the island). The metaheuristic with the
highest UCB score is then selected to replace the current one. This approach ensures that the selection process ex-
ploits metaheuristics that have proven effective in previous iterations, explores potentially promising metaheuristics
that have been underutilized, and gradually shifts focus toward better-performing metaheuristics as more information
(higher confidence) becomes available.

c) Adaptation Timing - The timing of metaheuristic adaptation is crucial for balancing the stability of the search
process and the responsiveness to changing search conditions. We implement adaptation either every Ki iterations
(for the island chosen based on one of aforementioned selection strategies A-C) or when stagnation is detected on
some island (replacement takes place on this island). Stagnation is defined as the absence of improvement in either the
best or average fitness for Ks consecutive iterations. This approach ensures that adaptation occurs at regular intervals
while also responding dynamically to the stagnation of the search process.

We incorporated the above adaptation strategies into the DdCPM model, creating a dynamic portfolio approach that
adaptively reconfigures the metaheuristic landscape based on optimization performance. Combining multiple island
selection strategies, algorithm replacement methods, and adaptation timing mechanisms, led to creation of a flexible
system that can adjust to the specific characteristics of the problem being solved.

4. Experimental setup

We evaluated the proposed method on two well-established benchmark problem domains to ensure comprehen-
sive testing across both discrete and continuous optimization challenges: Traveling Salesman Problem (TSP) and
Black Box Optimization Benchmarking (BBOB) [9]. For TSP we randomly selected 10 instances from the TSPLIB
library [28]. These instances consist of between 400 and 724 nodes (cities), specifically: rd400, fl417, pcb442, d493,
att532, si535, u574, p654, d657, and u724. For BBOB we utilized all 24 problem instances from the COCO plat-
form [11] dataset. The number of dimensions for all functions was set to 20.

While parameter optimization can significantly impact algorithm performance, it was not the primary focus of this
study. We conducted only preliminary experiments to determine reasonable parameter settings, as our main goal was to
investigate the general effectiveness of adaptive metaheuristic selection strategies in island-based optimization. Each
island maintained a fixed population size of nI = 100. Adaptive timing parameters are to Ki = 20 (fixed adaptation
timing interval) and Ks = 10 (stagnation interval). For each metaheuristic, we used standard parameter settings as
recommended in the literature, namely ACO [19]: pheromone evaporation rate of 0.1, initial pheromone value of
1.0; DE [34]: scaling factor F = 0.5, crossover rate CR = 0.9; GA [24]: crossover rate of 0.8, mutation rate of 0.01;
PSO [8]: inertia weight = 0.729, cognitive and social parameters c1 = c2 = 1.49445; SA [10]: initial temperature of
100, cooling rate of 0.95.

All experiments were conducted independently 20 times using different random seeds. The results presented in
the next section represent averages across all runs and all benchmark instances (24 for BBOB and 10 for TSP).
Statistical significance was assessed using a Wilcoxon Signed-Rank test with a p-value threshold of ≤ 0.05. To ensure
a fair comparison, all algorithms were allocated the same fitness function evaluation budget of 106 evaluations. Wall
clock time was not reported, as the execution time differences between algorithm variants (adaptation strategies) and
parameter settings were negligible.
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We utilized standard implementations of the selected algorithms, previously proposed in the literature. Specifically,
for continuous optimization, we employed ACO [19], DE [34], GA [24], PSO [8] and SA [10]. For the TSP, we used
ACO [40], DE [23], GA [27], PSO [29] and SA [10]. Detailed implementation descriptions can be found in the cited
papers or in our source code, which will be made publicly available upon paper acceptance.

Our primary objective was to demonstrate the potential of adaptive metaheuristic selection within the island model
framework. We did not perform direct comparisons with specialized algorithms for specific problem domains, as the
main assets of our approach aim to provide a general optimization framework applicable to various problem types.

5. Results

5.1. Static Metaheuristic Combinations

Table 1 presents the mean and standard deviation results for various island-based configurations of metaheuristics
for BBOB and TSP benchmark datasets. For single-metaheuristic configurations, DE demonstrates the best perfor-
mance for both BBOB and TSP benchmarks, while SA shows the weakest performance across both problem domains.
Larger metaheuristic combinations consistently outperform configurations with fewer metaheuristics included. It sug-
gests that the combination of diverse metaheuristic approaches creates a synergy that enhances overall performance.

Table 1. Mean and standard deviation results for island-based configurations of metaheuristics across BBOB and TSP benchmark datasets. Each
metaheuristic from the island configuration runs on a separate island. The best results are bolded.

Islands configuration BBOB TSP Islands configuration BBOB TSP
ACO 1.928±0.063 35461 ± 59 ACO+DE+GA 1.678±0.040 35100 ± 45
DE 1.677±0.037 35239 ± 49 ACO+DE+PSO 1.668±0.033 35016 ± 35
GA 1.788±0.051 35830 ± 83 ACO+DE+SA 1.648±0.023 34906 ± 35
PSO 1.842±0.050 36006 ± 79 ACO+GA+PSO 1.788±0.060 35468 ± 55
SA 1.988±0.026 36193 ± 74 ACO+GA+SA 1.758±0.053 35526 ± 55
ACO+DE 1.688±0.038 34993 ± 39 ACO+PSO+SA 1.778±0.050 35249 ± 45
ACO+GA 1.808±0.059 35465 ± 60 DE+GA+PSO 1.655±0.043 35176 ± 50
ACO+PSO 1.812±0.055 35446 ± 55 DE+GA+SA 1.658±0.035 35197 ± 50
ACO+SA 1.858±0.045 35397 ± 55 DE+PSO+SA 1.645±0.028 35120 ± 40
DE+GA 1.665±0.048 35225 ± 50 GA+PSO+SA 1.748±0.058 35760 ± 65
DE+PSO 1.672±0.039 35198 ± 45 ACO+DE+GA+PSO 1.658±0.030 35050 ± 35
DE+SA 1.668±0.030 35096 ± 45 ACO+DE+GA+SA 1.638±0.025 34960 ± 40
GA+PSO 1.768±0.056 35728 ± 75 ACO+DE+PSO+SA 1.625±0.015 34811 ± 30
GA+SA 1.775±0.054 35646 ± 70 ACO+GA+PSO+SA 1.738±0.055 35325 ± 50
PSO+SA 1.798±0.050 35784 ± 65 DE+GA+PSO+SA 1.637±0.023 35148 ± 45

ACO+DE+GA+PSO+SA 1.618±0.013 34778 ± 25

A comparative analysis of performance gains when a specific metaheuristic is added to an island-based setup is
presented in Table 2. The results clearly indicate that DE contributes the most significant performance improvements
across both problem domains, with a 9.50% gain for BBOB and 1.60% gain for TSP. This finding aligns with the
strong individual performance of DE observed in Table 1 and reinforces its importance within heterogeneous island-
based optimization frameworks. ACO, GA, and PSO offer moderate improvements, while SA contributes only slightly
to performance improvement. The relatively lower contribution of SA might be attributed to its typically slower
convergence rate, though it still provides useful diversity in the search process. These results highlight the varying
degrees of impact different metaheuristics can have on the overall performance, confirming the potential benefits of
dynamic algorithm allocation.

5.2. Adaptive Metaheuristic Selection Strategies

For the adaptive experiments, we utilized a set of 10 islands. As a baseline for evaluating our adaptive strategies,
we first identified the optimal static configurations. To determine the best configuration, we conducted exhaustive
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Table 2. A comparative analysis of performance gains (percent and absolute values) when a given metaheuristic is added to an island-based setup,
compared to the same setup without it (e.g. ACO+GA+PSO vs. ACO+PSO for GA) across all possible metaheuristic combinations (cf. Table 1).
These differences highlight each metaheuristic’s effectiveness in enhancing overall performance. The best results are bolded.

Metaheuristic BBOB TSP
% gain absolute gain % gain absolute gain

ACO 2.00 0.034 0.89 323.8
DE 9.50 0.157 1.60 567.5
GA 2.70 0.047 0.24 24.3
PSO 2.30 0.041 0.18 78.5
SA 0.80 0.015 0.05 113.1

testing by running all possible configurations and analyzing their performance. The number of possible combinations
of n = 5 metaheuristics (ACO, DE, GA, PSO, SA) on m = 10 islands is

(
n+m−1

m

)
=
(

14
10

)
= 1001.

Table 3 presents the five highest-performing static configurations along with their results, providing a basis for
comparison with our adaptive strategies. For BBOB problems, the optimal configuration consists of 2 ACO, 5 DE, 2
GA, 1 PSO, and 0 SA islands, achieving the result of 1.547. For TSP problems, the best configuration is 3 ACO, 4
DE, 2 GA, 1 PSO, and 0 SA, with the result of 34724.

Several patterns emerge from these optimal configurations. DE consistently represents the highest proportion of
islands (4-6 out of 10), reflecting its strong individual performance and significant contribution to hybrid setups. ACO
islands appear more beneficial for TSP problems (2-3 islands) than for BBOB problems (1-2 islands), likely due to
ACO’s established effectiveness in discrete optimization. SA is notably absent or minimally present (0-1 islands) in
the top configurations, suggesting its limited effectiveness within this island-based framework.

Table 3. The best static combinations of tested 5 metaheuristics for 10 islands setup averaged over all BBOB and TSP instances, e.g.
2ACO+5DE+2GA+1PSO+0SA means 2 islands running ACO, 5 running DE, 2 GA, and 1 PSO. The best results are bolded.

BBOB TSP
Top 5 best combinations Result Top 5 best combinations Result

1. 2ACO+5DE+2GA+1PSO+0SA 1.547 ± 0.023 3ACO+4DE+2GA+1PSO+0SA 34724 ± 17
2. 1ACO+6DE+2GA+1PSO+0SA 1.548 ± 0.029 2ACO+5DE+2GA+1PSO+0SA 34727 ± 23
3. 2ACO+4DE+2GA+1PSO+1SA 1.551 ± 0.021 3ACO+3DE+3GA+1PSO+0SA 34729 ± 19
4. 1ACO+5DE+2GA+1PSO+1SA 1.553 ± 0.019 2ACO+4DE+2GA+1PSO+1SA 34731 ± 22
5. 2ACO+5DE+1GA+2PSO+1SA 1.556 ± 0.022 2ACO+4DE+1GA+2PSO+1SA 34737 ± 20

Table 4 presents the results of our adaptive metaheuristic selection strategies for the same 10-island setup. In all
cases, the initial configuration was 2 islands assigned for each of 5 metaheuristics. Then, due to adaptive strategies,
this configuration was dynamically changed during algorithm runtime. Thus, Table 4 also shows the average number
of islands running each metaheuristic over all iterations and algorithm runs.

The UCB + Weakest strategy achieves the best performance for both BBOB and TSP problems, outperforming
even the best static configuration from Table 3. These results demonstrate that adaptive metaheuristic selection can
indeed improve optimization outcomes compared to static assignments. The success of the UCB +Weakest strategy
can be attributed to its effective balance between exploration and exploitation in metaheuristic selection. The UCB
component ensures that algorithm selection exploits successful metaheuristics while still exploring potentially promis-
ing alternatives, while the Weakest island selection strategy targets underperforming regions of the search space for
algorithm replacement. The dominance of the UCB as a replacement strategy and Weakest as a selection strategy is
also visible in other configurations (with other selection/replacement strategies).

Examining the average island distribution for the best strategy (UCB +Weakest), we observe that it broadly aligns
with the best static configurations identified in Table 3. DE is the most commonly chosen metaheuristics and SA is
the least selected one. This shows that our adaptive approach successfully identifies effective metaheuristic allocations
during runtime. The distributions resulting from the adaptation methods are more flattened compared to the optimal
static configurations. This occurs because the algorithm initially assigns an equal distribution, with two islands al-
located to each metaheuristic, requiring several iterations to adapt. Despite this, some adaptation strategies achieved
superior final results compared to static configurations. This can be attributed to the varying importance of different
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Table 4. Results for the proposed adaptive metaheuristic selection strategies in a 10-island setup for BBOB and TSP problems. The last five columns
show the number of islands running a given metaheuristic, averaged over all iterations and 20 algorithm runs. The best results are bolded. Results
that are statistically significantly better than the best static approach from Table 3 are shaded .

BBOB
Replacement strategy Selection strategy Result ACO DE GA PSO SA
Random Random 1.604 ± 0.048 2.04 2.26 1.95 1.82 1.93
Random Weakest 1.576 ± 0.044 1.82 3.64 2.03 1.58 0.93
Random Similar 1.587 ± 0.041 1.91 3.49 2.11 1.47 1.02
Best Random 1.592 ± 0.043 1.67 3.82 2.08 1.45 0.98
Best Weakest 1.558 ± 0.038 1.54 4.25 2.01 1.32 0.88
Best Similar 1.573 ± 0.037 1.61 3.93 2.07 1.49 0.90
Avg Fitness Random 1.579 ± 0.040 1.73 3.78 2.04 1.38 1.07
Avg Fitness Weakest 1.545 ± 0.046 1.49 4.31 1.98 1.36 0.87
Avg Fitness Similar 1.567 ± 0.037 1.58 3.89 2.12 1.41 1.00
UCB Random 1.563 ± 0.042 1.63 4.07 2.05 1.35 0.90
UCB Weakest 1.534 ± 0.035 1.66 4.43 1.95 1.09 0.87
UCB Similar 1.539 ± 0.038 1.55 4.13 2.01 1.34 0.97

TSP
Replacement strategy Selection strategy Result ACO DE GA PSO SA
Random Random 34761 ± 40 2.06 2.11 1.99 1.96 1.88
Random Weakest 34752 ± 31 2.74 3.68 2.11 0.97 0.50
Random Similar 34755 ± 35 2.95 3.25 2.35 0.85 0.60
Best Random 34755 ± 32 3.00 3.41 2.06 1.00 0.52
Best Weakest 34758 ± 23 2.84 3.47 2.21 0.94 0.43
Best Similar 34753 ± 26 3.07 3.24 2.13 0.90 0.55
Avg Fitness Random 34750 ± 33 3.15 3.63 1.93 0.83 0.66
Avg Fitness Weakest 34748 ± 25 3.28 3.81 1.78 0.68 0.45
Avg Fitness Similar 34745 ± 22 3.17 3.50 1.98 0.92 0.43
UCB Random 34754 ± 29 2.95 3.70 1.94 0.89 0.52
UCB Weakest 34705 ± 23 3.35 4.03 1.70 0.45 0.47
UCB Similar 34716 ± 21 3.11 3.70 2.01 0.67 0.51

metaheuristics at different phases of the algorithm’s runtime, suggesting that a dynamic distribution may be more
effective than maintaining a fixed optimal static configuration throughout the entire execution.

It is noteworthy that ACO receives significantly more islands in the TSP domain compared to BBOB, which aligns
with ACO’s known strength in discrete optimization problems. This demonstrates that the proposed adaptive approach
effectively allocates computational resources to the most suitable metaheuristics for each problem domain despite the
lack of prior domain knowledge.

Table 5 presents the frequency of switching metaheuristics for the best adaptation strategy (UCB + Weakest),
providing valuable insights into the dynamic behavior of our adaptive approach. DE is the most frequently selected
replacement algorithm which reinforces the finding that DE offers substantial benefits to the optimization process in
continuous domains. The relatively low frequency of transitions to SA across both problem domains suggests that SA
rarely emerges as the optimal choice during adaptation, which is consistent with its limited presence in the best static
configurations. These switching patterns show that our adaptive approach dynamically selects effective metaheuristics,
leveraging each algorithm’s strengths for different problem domains.

Table 5. Frequency of switching metaheuristics for the best adaptation strategy: UCB +Weakest.
BBOB TSP

From\To ACO DE GA PSO SA From\To ACO DE GA PSO SA
ACO 0.00% 16.13% 4.11% 1.59% 0.41% ACO 0.00% 11.41% 3.96% 1.02% 0.44%
DE 5.31% 0.00% 6.55% 1.62% 0.44% DE 10.49% 0.00% 9.47% 0.99% 0.36%
GA 3.28% 16.58% 0.00% 2.58% 0.41% GA 5.32% 11.76% 0.00% 1.50% 0.39%
PSO 4.08% 13.86% 2.82% 0.00% 0.40% PSO 7.46% 10.50% 2.79% 0.00% 0.33%
SA 4.77% 11.61% 2.91% 0.54% 0.00% SA 7.63% 10.89% 2.99% 0.31% 0.00%

sum 17.44% 58.19% 16.40% 6.33% 1.66% sum 30.90% 44.57% 19.20% 3.82% 1.51%
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5.3. Runtime analysis

We measured the average runtime across 20 runs for both adaptive and static configurations. For the BBOB bench-
mark suite, static configuration took 542.6 sec. per run on average, while the adaptive setup with the UCB +Weakest
strategy required 543.3 sec. on average, yielding an overhead of 0.13%. In the TSP domain, the respective average
times were equal to 753.3 and 754.1 sec., leading to an overhead of 0.11%. The results confirm that the adaptation
mechanism imposes a negligible computational cost, while offering significant performance benefits. Moreover, by
avoiding the need to pre-evaluate all possible static configurations (e.g., 1001 possible configurations for 10 islands
and 5 metaheuristics), the adaptive approach significantly reduces the time and effort required to tune the algorithm
for new problem domains.

Furthermore, optimal static configurations vary by problem domain, making the results non-transferable without
extensive recalculation. In contrast, adaptive strategies dynamically adjust in a single run, eliminating the need for
exhaustive tests. Time advantage grows exponentially with more islands or metaheuristics - e.g. increasing from 5 to
6 metaheuristics raises the number of possible configurations from 1001 to 3003.

6. Conclusions

This paper introduces an adaptive metaheuristic selection strategy for island-based optimization, addressing the
limitations of static algorithm assignments. Through extending the Diversity-driven Cooperating Portfolio of Meta-
heuristics (DdCPM) framework, we propose novel adaptation mechanisms that dynamically reconfigure the meta-
heuristic portfolio based on performance indicators and population characteristics.

Our experimental results demonstrate that adaptive selection strategies, particularly the combination of Upper
Confidence Bound (UCB) for algorithm replacement and Weakest Performance for island selection, outperform the
best static metaheuristic configurations. This improves solution quality while eliminating exhaustive pre-tuning and
making optimization more efficient and flexible across diverse problem domains. The adaptive approach offers a
flexible solution for practitioners, reducing the need for expert knowledge about the algorithm’s performance. It is
particularly advantageous when the optimization context changes over time (e.g. in smart grids [2] or manufacturing
scheduling [37, 38]) or when the best-suited metaheuristic for a given problem is unknown.

The findings suggest that adaptive metaheuristic selection provides a promising direction for future research in hy-
brid optimization frameworks. Potential future work includes exploring alternative adaptation mechanisms, including
the use of machine learning techniques for predictive algorithm selection.
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[33] Świechowski, M., Godlewski, K., Sawicki, B., Mańdziuk, J., 2023. Monte carlo tree search: A review of recent modifications and applications.

Artificial Intelligence Review 56, 2497–2562.
[34] Tanabe, R., 2024. Benchmarking parameter control methods in differential evolution for mixed-integer black-box optimization, in: Proceedings

of the Genetic and Evolutionary Computation Conference, pp. 712–721.
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