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Abstract. Island-based metaheuristics have gained significant attention in the
field of optimization due to their ability to maintain population diversity and avoid
premature convergence. A critical component of these algorithms is the migra-
tion strategy, which determines how individuals are exchanged between islands.
This paper investigates the impact of different migration strategies on the perfor-
mance of island-based metaheuristics, with a particular focus on the number of
migrated individuals and the criteria for their selection. We propose several strate-
gies for selecting individuals for migration, including random selection, fitness-
based, diversity-based and hybrid approaches, and evaluate their effectiveness on
a set of TSP (Traveling Salesman Problem) and BBOB (Black-box Optimization
Benchmarking) problems. Our results demonstrate that the choice of migration
strategy significantly affects the algorithm’s performance. Specifically, selecting
individuals based not only on fitness but also on their potential to increase diver-
sity leads to better outcomes.

Keywords: Optimization metaheuristic · Island-based algorithm · Distributed
optimization · Migration strategy.

1 Introduction

Population-based metaheuristics, such as Genetic Algorithms (GAs) [3], Particle Swarm
Optimization (PSO) [9], or Ant Colony Optimization (ACO) [5], have been widely used
to solve complex optimization problems [15]. These algorithms rely on a population
of candidate solutions that evolve over time, aimed at finding high-quality solutions.
However, one of the main challenges in population-based optimization is maintaining
diversity within the population to avoid premature convergence to suboptimal solutions.
Premature convergence can lead to the algorithm getting stuck in local optima, which
is particularly harmful in complex, multi-modal optimization landscapes.

Island-based models [17] address this challenge by dividing the population into sub-
populations (islands) that evolve independently. These islands periodically exchange
individuals through a process called migration, which helps maintain diversity and al-
lows subpopulations to explore distinct regions of the search space. The effectiveness
of island-based models depends heavily on the migration strategy [14], which deter-
mines how individuals are selected for migration, when migration occurs, and where
individuals are migrated [18].
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While previous research has extensively studied the timing and topology of migra-
tion, the question of how many individuals to migrate and which individuals to select
has received less attention. The number of migrated individuals and criteria for their
selection can significantly impact the algorithm’s performance, as they influence the
balance between exploration and exploitation. Migrating too few individuals may limit
the exchange of information between islands, while migrating too many of them may
disrupt the search process and lead to premature convergence.

In this paper, we investigate the impact of different migration strategies on the
performance of island-based metaheuristics, with a particular focus on the number of
migrated individuals and the criteria for their selection. We propose several strategies
for selecting individuals for migration, including fitness-based and diversity-based se-
lections, their hybridization, as well as a randomized approach. Their effectiveness is
evaluated on a set of benchmark problems, providing a guidance for designing more
effective distributed optimization algorithms.

2 Related work

Island-based optimization is a well-established paradigm in evolutionary computation,
wherein multiple subpopulations (islands) evolve in parallel and periodically exchange
individuals through a migration mechanism. Several early works [17, 2, 1] demonstrated
that island models outperform classical EAs. However, the effectiveness of these models
largely depends on migration strategies, including the selection of migrants, migration
frequency, and reintegration policies [14, 10, 8, 19].

Selection of individuals to migrate plays a crucial role in migration effectiveness.
The most common strategies include random selection and fitness-based one [12]. Ran-
dom selection, though simple and fast, may not always promote the exchange of high-
quality solutions. In contrast, fitness-based approaches (e.g., best or worst individual
selection) ensure that migration contributes to the overall progress, but they may also
lead to premature convergence due to reducing population diversity [4]. This issue was
addressed in the frequency-based fitness assignment method [16] that replaces the tra-
ditional objective function with a measure of how often solutions with the same fitness
value have been found.

Recent advancements have focused on adaptive migration models based on real-
time population metrics. For instance, [11] introduced self-adaptive migration schemes
that modify selection rules based on diversity and convergence indicators, allowing
more flexible and problem-specific optimization. Other studies [6] have explored island
attractiveness as a migration destination and the impact of the island interconnection
topology.

Despite significant progress, open challenges remain in understanding the optimal
balance between the selection pressure and the diversity maintenance in the context of
migration strategies. The impact of different migration selection schemes under various
optimization landscapes is still an active area of research.

This paper builds on prior work [18] where the authors explored various migra-
tion strategies answering three fundamental questions: “When to migrate?”, “What to
migrate?”, and “Where to migrate?”. In this paper, we focus on systematic analysis of
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another critical migration aspect: a mechanism of selecting individual(s) for migration.
We evaluate the effects of particular selection mechanisms on population diversity and
convergence, and propose enhanced selection models.

3 Strategies of migrants selection

In island-based metaheuristics, the selection of individuals for migration is a critical
factor influencing the algorithm’s ability to balance exploration and exploitation [4].
Traditional approaches often migrate a single individual based on fitness. However,
migrating multiple individuals can enhance the exchange of diverse solutions between
islands, potentially improving overall search performance. This approach opens up var-
ious strategic possibilities for selecting migrants. Both the number of individuals to mi-
grate (K) and the criteria for their selection (S ) must be carefully determined to prevent
disruption of the search process or premature convergence.

We propose several strategies for selecting individuals for migration, each with its
own underlying intuition and potential benefits:
S0: Random Selection: Randomly selects K individuals without considering fitness
or diversity. This method serves as a baseline to benchmark the necessity of strategic
selection.
S1: Top K Fitness: Selects K individuals with the highest fitness values from the donor
islands. The intuition is that migrating the best solutions can help propagate high-quality
solutions across islands, promoting exploitation. However,if overused this approach
may reduce diversity, potentially leading to premature convergence.
S2: Top K Diversity: Selects K individuals that maximize the diversity of the receiv-
ing island’s population. Diversity is measured using the average standard deviation of
individuals across all dimensions. The goal is to introduce new genetic material to the
receiving island, enhancing exploration. However, note that this strategy may poten-
tially migrate individuals that are outliers, not necessarily beneficial for convergence.
S3: Top K

2 Fitness + Top K
2 Diversity: This hybrid approach selects half of the mi-

grants based on fitness and the other half based on diversity. The idea is to improve
effectiveness by combining the strengths of two previous strategies - exploiting high-
quality solutions while maintaining genetic diversity.
S4: Top K (Fitness + Diversity): Selects K individuals based on a combined score of
fitness and diversity. The score is computed as the sum of normalized fitness (χ) and
normalized diversity (δ), where both metrics are scaled to [0,1]. Specifically, the fitness
value fi of the candidate solution i is transformed to χi ∈ [0, 1] by applying min-max
normalization:

χi =
fi − fmin

fmax − fmin

where fmin and fmax represent the minimum and maximum fitness values across the
current population. The diversity metric is computed as described in S2 and normalized
in the same way as the fitness metric. The final score in S4 is calculated as the sum of
these normalized fitness and diversity metrics: χi + δi. This approach aims to balance
exploration and exploitation by considering both criteria simultaneously.
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S5: Weighted Random Selection: Assigns selection probabilities to individuals based
on the sum of their normalized fitness and diversity scores (as in S4). Each individual i
is then chosen stochastically according to its probability:

p(i) =
χ(i) + δ(i)∑

j∈I(χ( j) + δ( j))
,

where χ(i) and δ(i) are the normalized fitness and diversity of the individual i respec-
tively, and I is the set of candidate migrants. Unlike deterministic selection in S4, this
method introduces stochasticity, preventing dominant individuals from always being
chosen while still favoring well-rounded candidates.
S6: Weighted K (Fitness + Diversity): Selects K individuals using a dynamically
weighted sum of fitness (χ) and diversity (δ). For the j-th selected individual ( j ∈
{1, . . . ,K}), the selection maximizes the weighted sum:

j − 1
K − 1

χ + (1 −
j − 1

K − 1
)δ.

This means that the first selected individual ( j = 1) is chosen solely based on diversity
(as in S2), while the last one ( j = K) is chosen solely based on fitness (as in S1). This
method gradually shifts priority between selected individuals from diversity to fitness.
S7: Top 1 Fitness from K Clusters: Clusters the population into K groups using the
K-means algorithm based on solution similarity. The best-fitted individual from each
cluster is then selected for migration. This approach ensures that migrants are both
high-quality and diverse, representing different regions of the search space.

Each strategy presents its unique properties influenced by the problem landscape
and the state of the optimization process. In subsequent sections, we evaluate these
strategies experimentally to assess their impact on the performance of the island-based
algorithm.

In strategies that rely on diversity (S2 - S6) individuals are selected sequentially, i.e.
after each individual is selected, the diversity metric is recalculated to account for the
impact of the newly added individual on the remaining candidates.

A general limitation of diversity-based migrant selection strategies is their depen-
dence on a reliable distance measure between solutions in the search space. Such mea-
sures can be challenging to define when elements of solution vectors have different
units or scales. While normalization techniques can mitigate these issues, their effec-
tiveness and appropriateness tend to be problem-specific. Thus, a careful consideration
and possibly problem-specific normalization of strategies are necessary when applying
the proposed strategies to particular optimization problems.

4 Experimental setup

4.1 Baseline method

The baseline method used in this study is the Diversity-driven Cooperating Portfolio
of Metaheuristics (DdCPM) algorithm [18], which integrates multiple metaheuristics in
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an island-based framework. The algorithm employs a migration mechanism to dynami-
cally adjust the flow of individuals between islands. DdCPM was chosen as the baseline
due to the inherent diversity between islands (each of them is developed using a differ-
ent metaheuristic), making it a suitable method for evaluating the impact of different
migration strategies.

The pseudocode of the baseline DdCPM method is provided in Algorithm 1. Each
island I ∈ I is defined by three attributes: Ipopulation, which represents a set of nI can-
didate solutions (individuals); Imetaheuristic, the specific metaheuristic algorithm used to
evolve Ipopulation; and Ineighbours ⊂ I, the set of neighboring islands from which migra-
tion to I can occur.

Algorithm 1 Pseudocode of the baseline DdCMP method.
1: for each island I ∈ I do
2: initialize Ipopulation with random individuals
3: end for
4: while evaluation_budget > 0 do
5: for each island I ∈ I do
6: if needs_migration(I) then
7: Ipopulation = Ipopulation∪ migrate_from(Ineighbours)
8: end if
9: end for

10: for each island I ∈ I do
11: Ipopulation = next_generation(Ipopulation, Imetaheuristic)
12: evaluate(Ipopulation)
13: evaluation_budget = evaluation_budget −|Ipopulation|

14: end for
15: end while
16: return the best individual from I

In experiments, we used the DdCMP variant tested in [18], which consists of six
islands. Each of the three metaheuristic algorithms (GA, PSO, and ACO) is assigned to
two islands. The migration topology follows a clique structure, where every island is
directly connected to all the others, enabling individuals to migrate freely between any
pair of islands. Each island maintains a fixed population size of 100 individuals. The
stopping criterion is based on a total fitness function evaluation budget of 105 evalua-
tions.

4.2 Benchmark problems

To evaluate the effectiveness of the proposed migration strategies, we conducted exper-
iments in two well-established benchmark problem domains: the Traveling Salesman
Problem (TSP) and the Black-box Optimization Benchmarking (BBOB) framework.

For the TSP, we selected 10 instances from the TSPLIB library [13], ranging from
400 to 724 nodes. These instances are known for their complexity and are widely used
to evaluate optimization algorithms. For the BBOB, we used all 24 problem instances
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from the COCO platform [7], covering a diverse range of functions, including separa-
ble functions, multi-modal functions, and functions with varying conditioning. For all
functions the number of dimensions was set to 20.

The TSP represents a discrete optimization problem, while the BBOB functions are
continuous optimization tasks. This distinction allows us to evaluate the performance
of the proposed migration strategies across different types of optimization problems.

Each experiment was performed independently 20 times with different random seeds,
and the presented results are the averages of these runs. Statistical significance was
checked according to the Wilcoxon signed-rank test with p-value ≤ 0.05.

5 Results

5.1 Number of migrants

The number of individuals migrated between islands (K) plays an important role in the
performance of the island-based DdCMP method. We evaluated the impact of different
values of K (ranging from 1 to 24) on the algorithm’s performance. The results, av-
eraged over 20 independent runs, are presented in Tables 1 and 2 for TSP and BBOB
problems respectively. For the strategies S3 and S6, the case of K = 1 is not applicable.

Table 1. Averaged results for various K values and different migrants selection strategies (cf.
Section 3) for the TSP instances. The best results for each strategy are bolded. The best overall
result is shaded .

K
Strategy 1 2 4 8 12 16 20 24

S0 36231 ± 107 36165 ± 113 36211 ± 123 36267 ± 117 36249 ± 110 36255 ± 102 36272 ± 109 36285 ± 115
S1 35795 ± 81 35789 ± 48 35760 ± 66 35746 ± 87 35750 ± 44 35737 ± 42 35731 ± 52 35768 ± 56
S2 36178 ± 74 36158 ± 55 36120 ± 83 36108 ± 39 36100 ± 50 36103 ± 61 36105 ± 68 36119 ± 72
S3 - 35737 ± 78 35703 ± 40 35701 ± 53 35689 ± 61 35696 ± 69 35712 ± 75 35728 ± 79
S4 35622 ± 44 35572 ± 67 35523 ± 49 35461 ± 62 35475 ± 64 35521 ± 85 35540 ± 88 35562 ± 92
S5 35920 ± 89 35885 ± 92 35894 ± 87 35884 ± 91 35912 ± 94 35968 ± 97 35985 ± 102 36010 ± 104
S6 - 35746 ± 80 35614 ± 53 35316 ± 76 35302 ± 71 35238 ± 45 35272 ± 58 35310 ± 63
S7 35795 ± 71 35646 ± 42 35596 ± 59 35474 ± 82 35485 ± 63 35532 ± 47 35558 ± 64 35582 ± 69

The results indicate that the impact of increasing K on the DdCMP performance
varies across strategies. For both TSP and BBOB benchmarks, the most noticeable per-
formance improvements occur for K ≤ 12. Beyond this point, the performance either
degrades or enters a plateau with only marginal improvement. The only exception is
strategy S1, which for the TSP instances report the highest results for K = 20. Overall,
in most cases, the best performance points are accomplished for K = 8, 12, 16 which
suggests that migrating a moderate number of individuals is sufficient to achieve a good
balance between exploration and exploitation. Beyond a certain point, additional mi-
grated individuals do not significantly contribute to the solution improvement, or may
even disrupt the search process. For all strategies, the results for the best K value are
not statistically significantly better than those for the second-best K. However, for each
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Table 2. Averaged results for various K values and different migrants selection strategies (cf.
Section 3) for the BBOB instances. The best results for each strategy are bolded. The best overall
result is shaded .

K
Strategy 1 2 4 8 12 16 20 24

S0 2.413 ± 0.13 2.377 ± 0.12 2.269 ± 0.14 2.268 ± 0.12 2.285 ± 0.13 2.418 ± 0.14 2.506 ± 0.15 2.493 ± 0.14
S1 2.205 ± 0.10 2.122 ± 0.09 2.057 ± 0.10 2.046 ± 0.09 2.054 ± 0.10 2.040 ± 0.10 2.058 ± 0.11 2.113 ± 0.10
S2 2.598 ± 0.13 2.611 ± 0.11 2.520 ± 0.12 2.555 ± 0.10 2.504 ± 0.11 2.508 ± 0.11 2.571 ± 0.12 2.576 ± 0.11
S3 - 2.154 ± 0.10 2.140 ± 0.09 2.115 ± 0.09 2.155 ± 0.10 2.063 ± 0.11 2.094 ± 0.10 2.155 ± 0.11
S4 1.594 ± 0.08 1.606 ± 0.07 1.530 ± 0.07 1.468 ± 0.07 1.445 ± 0.08 1.455 ± 0.08 1.502 ± 0.09 1.554 ± 0.08
S5 2.090 ± 0.09 2.016 ± 0.10 1.987 ± 0.09 1.891 ± 0.09 1.956 ± 0.10 2.062 ± 0.09 2.012 ± 0.10 2.005 ± 0.11
S6 - 2.200 ± 0.10 1.964 ± 0.09 1.532 ± 0.08 1.531 ± 0.07 1.428 ± 0.07 1.478 ± 0.08 1.468 ± 0.08
S7 2.131 ± 0.10 1.854 ± 0.09 1.707 ± 0.08 1.589 ± 0.08 1.512 ± 0.07 1.522 ± 0.07 1.520 ± 0.08 1.576 ± 0.07

strategy, the results for the best K are statistically significantly better than those for at
least half of the worst-performing K values tested.

Strategies that combine fitness and diversity, namely S4, S6, and S7, turned out to
perform best. These strategies consistently outperformed simpler approaches, such as
random selection (S0) or purely fitness-based selection (S1). Statistical tests confirmed
that the differences among S4, S6, and S7 were not significant, but each of these strate-
gies significantly outperformed the others (S0, S1, S2, S3, and S5). This highlights the
importance of balancing fitness and diversity when selecting migrants, as strategies that
focus solely on one of these aspects tend to underperform. Strategy S6 with K = 16
achieved the best overall result across all tested settings.

The worst-performing strategies were S0 (random selection) and S2 (diversity-
based selection). Random selection, while simple, does not leverage any information
about the quality or diversity of individuals, leading to suboptimal performance. On
the other hand, S2, which selects individuals solely based on diversity, often migrates
outliers that significantly increase diversity but contribute little or nothing to the fitness.

5.2 Detailed results

Tables 3 and 4 present detailed results for each tested TSP and BBOB instance, resp.
The results correspond to the values of K that yielded the best average performance for
each strategy, reported in Tables 1 and 2, resp. Presented outcomes confirm our earlier
observation that strategies S4, S6, and S7 generally outperform the others. At the same
time, the choice of the most profitable strategy among these three depends on specific
problem instance.

5.3 Migration source: one individual from each island vs. a common pool

To further investigate the impact of migration strategies in island-based optimization,
we conducted experiments to compare two meta-approaches for selecting migrants:

– One from each island: In this approach, one individual is selected from each of the
K islands (in our experiments K = 5, as DdCMP considers 6 islands). This ensures
that migrants are drawn from diverse subpopulations, promoting exploration.
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8
1.024

±
.051

0.870
±

.043
1.235

±
.062

1.112
±

.056
1.142

±
.057

0.990
±

.049
2.135

±
.107

1.860
±

.093
0.672

±
.034

0.568
±

.028
2.218

±
.111

1.940
±

.097
S6

K
=

16
0.815

±
.041

0.652
±

.033
0.942

±
.047

0.823
±

.041
0.884

±
.044

0.751
±

.037
1.784

±
.089

1.549
±

.078
0.562

±
.028

0.439
±

.022
1.724

±
.086

1.493
±

.075
S7

K
=

12
0.857

±
.043

0.717
±

.036
0.987

±
.049

0.860
±

.043
0.946

±
.047

0.818
±

.041
1.874

±
.094

1.627
±

.081
0.584

±
.029

0.489
±

.024
1.765

±
.088

1.533
±

.077
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– Common pool: In this approach, all individuals from all islands are combined into
a single pool, and K individuals are selected from this pool. This allows for a more
centralized selection process, potentially favoring higher-quality or more diverse
individuals. This approach was also employed in all previous experiments, as Dd-
CMP implements a clique island migration topology.

The goal of these experiments is to determine whether selecting migrants from a
common pool (global perspective) or one from each island (local perspective) leads
to better performance. This distinction is particularly important for strategies that rely
on global information, such as diversity-based or hybrid approaches, as the source of
migrants can significantly influence the final algorithm performance of the overall al-
gorithm.

We tested both approaches for strategies S0 (Random Selection), S1 (Top K Fit-
ness), S2 (Top K Diversity), S4 (Top K (Fitness + Diversity)), and S5 (Weighted Ran-
dom Selection). The remaining strategies were excluded from this analysis because they
inherently rely on a global perspective (they require selection of K > 1 individuals from
one population to compute meaningful scores or clusters).

Table 6. Performance of migration strategies with different migration sources one from each
island vs. common pool (K = 5). The best results for each strategy are bolded. Statistically
significant differences between migration sources is shaded

.

TSP BBOB
Strategy One from each island Common pool One from each island Common pool

S0 36245 ± 102 36312 ± 108 2.436 ± 0.15 2.505 ± 0.16
S1 35737 ± 42 35812 ± 47 2.049 ± 0.10 2.108 ± 0.11
S2 36103 ± 61 36078 ± 65 2.534 ± 0.11 2.5516 ± 0.12
S4 35521 ± 85 35412 ± 89 1.522 ± 0.08 1.495 ± 0.09
S5 35968 ± 97 35845 ± 101 2.014 ± 0.10 2.001 ± 0.11

The results averaged over all instances are presented in Table 6. For S0 and S1, the
one from each island approach performs better than the common pool approach. This is
probably because selecting one individual from each island introduces diversity into the
target island, which helps maintain exploration and prevents premature convergence. In
contrast, the common pool approach may lead to over-concentration of similar individ-
uals from one island.

For S2 there is no significant difference between both approaches. S2 focuses solely
on diversity, and selecting one individual from each island already ensures a diverse
set of migrants. The common pool approach does not provide additional benefits in
this case, as the diversity metric is effectively preserved in both scenarios. However,
this approach still lacks consideration of certain fitness-related information and tends to
select mostly outlier individuals for migration, which is not particularly beneficial.

For S4 and S5, the common pool approach performs better. These strategies benefit
from a global perspective when combining fitness and diversity scores or assigning
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selection probabilities. The common pool approach ensures that the selection process is
driven by the information from the full population, leading to more effective migration
decisions.

In conclusion, the choice of migration source is strategy-independent. For a random
strategy and those that focus solely on fitness or randomness, selecting one individual
from each island is preferable, as it introduces diversity and promotes exploration. For
strategies that rely on global information, such as diversity-based or hybrid approaches,
the common pool approach is more effective.

5.4 Computation time

Table 7 presents the average computation time for each strategy using K = 8. The re-
sults show that the computation time does not differ significantly between strategies,
with the exception of S7, which requires additional time to perform clustering. The
simplest strategy, S0 (random selection), had the lowest computation time. The differ-
ences between the other strategies (S1-S6) were within the range of standard deviation,
indicating that the selection process itself is not a significant contributor to the overall
computation time.

Table 7. Average computational time (in seconds) for different migrant selection strategies.

Strategy TSP BBOB Strategy TSP BBOB
S0 45.5 ± 0.7 62.1 ± 1.0 S4 48.6 ± 1.0 65.7 ± 1.5
S1 45.9 ± 1.0 63.3 ± 1.3 S5 49.1 ± 1.3 67.2 ± 1.4
S2 47.2 ± 1.1 65.8 ± 1.2 S6 49.4 ± 1.2 67.6 ± 1.7
S3 47.8 ± 0.8 64.4 ± 1.1 S7 51.7 ± 1.5 70.2 ± 1.8

Furthermore, the experiments showed that the computation time for each strategy
was largely independent of the value of K, with the exception of S7. This suggests
that the selection of migrants is not a computationally intensive process and does not
significantly impact the overall runtime of the algorithm. Therefore, in practical use, one
can focus on selecting the most effective migration strategy without worrying about its
computational cost.

6 Conclusion

This paper investigates the impact of migration strategies on the performance of island-
based metaheuristics, with a focus on the selection of individuals for migration. We
propose and evaluate several strategies, ranging from simple random selection to hybrid
approaches that balance fitness and diversity. The results demonstrate that the choice of
migration strategy significantly influences the quality of the solutions found.

A key finding is that increasing the number of migrants generally improves per-
formance, but the benefits decrease as the number of them grows. Migrating a moder-
ate number of individuals is sufficient to achieve strong performance, while avoiding
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the potential downsides of the excessive migration (e.g. homogenization of the popu-
lations). Strategies that combine fitness and diversity consistently outperform simpler
approaches, highlighting the importance of balancing these two factors.

In conclusion, this study highlights the importance of carefully designing migration
strategies in island-based metaheuristics, and provide practical guidance for improving
the effectiveness of island-based models in solving complex optimization problems.
In future research, we plan to perform comprehensive benchmarking of the proposed
approach against state-of-the-art metaheuristic algorithms, and extend the algorithm
evaluation to a wider set of metaheuristics, higher number of islands, and other prob-
lem domains. Another direction of research is the exploration of more sophisticated
migration strategies, for example self-adaptive migration or frequency-based fitness as-
signment [16].
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