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a b s t r a c t

Label Distribution Learning (LDL) is a new learning paradigm with numerous applications in various
domains. It is a generalization of both standard multiclass classification and multilabel classification.
Instead of a binary value, in LDL, each label is assigned a real number which corresponds to a degree
of membership of the object being classified to a given class. In this paper a new neural network
approach to Label Distribution Learning (Duo-LDL), which considers pairwise class dependencies,
is introduced. The method is extensively tested on 15 well-established benchmark sets, against
6 evaluation measures, proving its competitiveness to state-of-the-art non-neural LDL approaches.
Additional experimental results on artificially generated data demonstrate that Duo-LDL is especially
effective in the case of most challenging benchmarks, with extensive input feature representations and
numerous output classes.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Classification is one of the most popular tasks in machine
earning, however, its standard formulation (binary or multiclass)
oes not cover all real-life cases. Multilabel Classification (MC) [1]
xtends a baseline classification task by assuming that each object
an be assigned to a subset of all available classes. MC formulation
as become quite popular in the literature due to many practical
pplications [2]. Nonetheless, many real-life settings cannot be
odeled within the above-mentioned frameworks, e.g. an object
ay belong to two classes, but not to the same degree (a cross-
reed dog may have more traits from one breed than from the
ther one, or a seaplane in standard vehicle classification should
ost probably be classified as an aircraft, not as a boat, though
nly assignment to both of these classes, with different degrees,
an fully represent its construction. In order to address the above
eeds a novel machine learning paradigm — Label Distribution
earning (LDL) was formally proposed in 2016 [3] (before the
ame LDL was coined in [3] several other works also considered
his problem, e.g. [4–6]).

In LDL, instead of assigning a binary value to a class a real
umber is assigned to each label, whose value indicates a degree
f membership of the object to the respective class. Similarly to
he case of probability distribution the sum of all assigned values
quals 1 for each sample.

∗ Corresponding author.
E-mail address: j.mandziuk@mini.pw.edu.pl (J. Mańdziuk).
ttps://doi.org/10.1016/j.asoc.2021.107585
568-4946/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a

nc-nd/4.0/).
Despite being established only a few years ago, LDL has al-
ready gained visible attention and various methods have been
proposed in the literature. In most of the cases, they adopt one
of the well-known Machine Learning (ML) algorithms to deal
with LDL (e.g. k-Nearest Neighbors or Multilayer Perceptron) or
transform LDL to another well-researched problem, e.g. MC. There
are only a few methods designed specifically with the aim of
solving LDL.

The vast majority of existing LDL solutions represent a super-
vised approach as the most common LDL formulation is the one
considered in this paper, i.e. with an assumption that informa-
tion about the set of labels and label distribution over training
instances is available to the solution process (see Section 3.1 for
a formal problem definition).

2. Motivation

The majority of hitherto proposed algorithms focus on find-
ing a solution separately for each label, thus ignore correlations
between labels. However, please observe that in MC domain
solutions which tackle a task by considering pairwise relations
between labels (e.g. by turning the task into label ranking problem
that is solved using techniques of pairwise comparison [7] or
by direct learning of correlations between any two labels [8])
clearly outperform methods that decompose the MC problem
into independent binary classification tasks [9]. Since LDL is an
extension of MC it is legitimate to expect that a similar idea will
be valid for LDL problem. Consequently, our main research claim
is that considering pairwise label interdependencies has potential

to improve the results for LDL task.
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In the paper we experimentally verify the above claim. To this
end we propose a new neural network approach to LDL (called
Duo-LDL) which considers pairwise relations between classes
in the form of an extended output layer and specifically de-
signed error function that incorporates pairwise correlations be-
tween classes. Duo-LDL is extensively evaluated on a set of 15
well-established benchmarks and 6 different evaluation measures
and demonstrates its on par performance to state-of-the-art LDL
approaches.

To our knowledge, among LDL approaches, there is only one
method that employs neural networks [3] which, however, does
not take into account inter-label dependencies in the training
data and employs a feedforward network with a direct class
encoding in the output layer.

3. Label distribution learning

3.1. Problem formulation

Label Distribution Learning problem can be formulated as
follows. Let X = {x1, . . . , xN : xi ∈ Rn

} denotes an n-dimensional
instance space and let Y = {y1, y2, . . . , yq} be a finite set of q
predefined classes. LDL consists in learning function p : X × Y →

[0, 1], where p(xi, yj) (in short pji) is a real number from unit
interval which denotes a degree of membership of instance xi to
class yj. Furthermore,

∀xi ∈ X
q∑

j=1

pji = 1 (1)

Alternatively, in some domains, pji can be interpreted as the
probability that instance xi belongs to class yj. In this context pji
represents a degree to which label yj describes instance xi.

It is generally assumed that for some training subset X t
⊂ X of

data instances the probability distributions of pji(xi ∈ X t , yj ∈ Y )
is provided. Hence, in ML approaches function p is usually learnt
in a supervised training manner.

LDL formulation extends several popular classification tasks.
Traditional (single label) classification is a special case of LDL in
which for each instance xi ∈ X, pji = 1 for exactly one class yj
and pji = 0 for all the other classes. In terms of LDL formulation
MC can be expressed in the following way. For a given instance
xi ∈ X , for each label yj from the true labels set yj ∈ Ytrue(xi) assign
pji =

1
|Ytrue(xi)|

and pji = 0, otherwise.
In some sense, LDL links two of the most popular machine

learning tasks: classification and regression. On the one hand,
there is a certain finite set of classes to which an instance may
be assigned (classification), but, on the other hand the objective
is to find a real-valued degree of membership for each class
(regression). Deeper theoretical analysis of LDL problem can be
found in [10].

3.2. State-of-the-art approaches

This section presents a brief overview of state-of-the-art LDL
solution methods which will be used in Section 6 for evaluation
of the Duo-LDL approach.

Observe that in the recent literature some new variants of
the LDL problem were introduced, for instance, LDL with noisy
labels [11] or with partially labeled data [12]. However, as men-
tioned above, our focus is on the most popular perfect-information
formulation of LDL which assumes that distributions of labels
are known for a (training) subset of the data samples. Conse-
quently, all state-of-the-art methods we compare with are super-
vised ones. These approaches and can be roughly divided into 3
2

groups: problem transformation methods, algorithm adaptation
approaches, and specialized (dedicated) algorithms.

Problem transformation methods reformulate the LDL problem
to the form of another well-established learning scenario — the
single-label learning. For each example xi, instead of learning
a distribution of classes over a vector of q elements, separate
learning tasks are performed for each of the q classes with the
overall number of training examples increasing from n to qn. This
transformation is straightforward, easy to apply and efficient in
certain cases, but since each label is considered independently,
it does not take into account relations between classes. The
above way of approaching LDL problem was proposed in the
original Zhang’s paper [3] in the form of PT-Bayes or PT-SVM
algorithms. The former employs standard Bayesian classifier (the
posterior probability computed by the Bayes rule), the latter
adopts the (binary) Support Vector Machine (SVM). In either case
the final result is obtained using a pairwise coupling multi-class
method [13].

The second strategy is algorithm adaptation which consists in
an adjustment of an existing solution method to make it capable
of dealing with LDL. One example is the AA-kNN [3], which adopts
the k-Nearest Neighbors method (kNN) [14]. Classification result
for a given instance xi is a normalized mean of label distributions
of k instances from the training set that are closest to xi (in terms
of Euclidean distance in a vector feature space). One of the re-
cently introduced adaptation methods is LALOT [15] which adopts
Optimal Transport (OT) theory [16] to simultaneously learn label
distribution and exploit label correlations. Another approach, AA-
BP [3], employs a Multilayer Perceptron (MLP) with one hidden
layer trained with backpropagation algorithm. The sizes of the
input and output layers are equal to the numbers of input fea-
tures and the number of classes, respectively. Condition (1) is
ascertained by using a softmax activation function in the output
layer. The algorithm serves as the basis for the method proposed
in this paper. Our method, CARTesian-based Label Distribution
Learning (Duo-LDL) which is described in the following section,
significantly extends and enhances AA-BP, which leads to a qual-
itatively new approach with qualitatively stronger experimental
results.

The last group of methods includes algorithms which are
designed specifically for the purpose of solving LDL problems. IIS-
LD [3] treats a given LDL task as the maximum entropy model
17] and maximizes its likelihood based on the improved it-
rative scaling (IIS) strategy [18]. Another approach, BFGS-LLD,
elies on Broyden–Fletcher–Goldfarb–Shanno (BFGS) [19] quasi-
ewton optimization method. A recent promising method is GD-
DL-SCL [20] which exploits local correlations by means of pre-
icting their distribution/structure based on the original features
nd the local correlation vector which is created for each in-
tance. A similar approach (named Adam-LDL-SCL) is presented
n [21] which improves the above-mentioned GD-LDL-SCL by
sing Adam optimizer [22]. Another recent method LDL-LCLR [23]
tilizes label correlation matrix to capture global correlations
mong classes. Class correlations among local samples are de-
ected and used to modify the correlation matrix.

All 10 above-mentioned methods serve as baseline approaches
or experimental performance assessment of our Duo-LDL algo-
ithm.

. Proposed approach

Feedforward neural networks are one of the first choices when
olving LDL tasks, as they are naturally capable of returning a
ector of real numbers normalized to sum up to 1 by means of
he softmax activation function in the output layer. Despite this
atural fitness, their straightforward application to LDL does not
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ead to strong results [3]. The MLP architecture with one hidden
ayer (1hl) and q output neurons (one per class) utilized in AA-
P method [3], mentioned in the previous section, yielded results
nferior to alternative approaches, e.g. AA-kNN, IIS-LLD or BFGS-
LD. A similar situation was observed in the case of MC problem,
here initial, direct application of MLPs [24] was not competi-
ive to other established algorithms in that domain. After some
daptation and refinement, in particular suitable reformulation of
he error function proposed in [25], which directly incorporates
nformation about correlations and dependencies between labels,
he results have improved visibly. Subsequent modifications pro-
osed in [26,27] made the MLP approach a viable alternative to
xisting state-of-the-art MC methods.
The main goal of this paper is to propose a novel LDL method

hich takes into account not only degrees of membership of a
iven sample to target classes, but also considers nonlinear pair-
ise dependencies between classes. The underlying idea of this
ethod was inspired by the relevance of considering pairwise

elations between labels in the learning process in MC domain,
bserved in several recent papers [28–30,25–27]. Due to a certain
egree of similarity between MC and LDL tasks, taking into ac-
ount the inter-label dependencies may potentially improve LDL
olution methods as well.
The proposed method (abbreviated as Duo-LDL) is imple-

ented in the form of a one-hidden-layer MLP with the input
ayer size equal to the number of features in the considered data
et and the output layer consisting of q(q−1) neurons (see Fig. 1).
very q − 1 consecutive outputs represent differences between
egrees of membership of a given input sample x to a certain
lass and all the other q − 1 classes, respectively. Formally, let
ij(x) be an output value of ((i−1)(q−1)+ j)th output neuron, for
i, j ∈ {1, . . . , q}, i ̸= j, in response to the input sample x. Then,
the training objective of this neuron is to learn the following
difference:

cij(x) = pi(x) − pj(x) (2)

where pk(x), k = 1, . . . , q denotes a degree of membership of
sample x to the kth class and is calculated based on the network’s
outputs cij(x). First, let us write all Eqs. (2) for a given label k and
an additional identity term as the last equation.

p̂k(x)= ck1(x) + p̂1(x)
...

p̂k(x)= ck(k−1)(x) + p̂k−1(x)
p̂k(x)= ck(k+1)(x) + p̂k+1(x)

...

p̂k(x)= ckq(x) + p̂q(x)
p̂k(x)= p̂k(x)

(3)

Summing the above equations leads to

q · p̂k(x) =

q∑
j=1
j̸=k

ckj(x) +

q∑
j=1

p̂j(x) (4)

From LDL definition,
∑q

j=1 p̂
j(x) = 1, so the above formula can

be rewritten as

p̂k(x) =
1
q

⎛⎜⎝ q∑
j=1
j̸=k

ckj(x) + 1

⎞⎟⎠ (5)

In effect, the error function in the training process is of the
ollowing form:

=

q∑
i,j=1

(
p̂i(x) − p̂j(x) − cij(x)

)2
(6)
i̸=j

3

Fig. 1. Proposed network architecture.

In the tests phase, a degree of membership of sample x to
given class k (p̂k(x)) is computed from the network outputs

according to (5).
A pseudocode of the proposed method is presented as

Algorithm 1. The proposed approach differs from the baseline
neural network method (AA-BP) [3] in several key aspects. The
main difference is the learning goal — in the AA-BP method labels
distribution is learnt directly, whereas our method additionally
incorporates information about label inter-dependencies, as well
as the LDL probability distribution constraint (1). Furthermore,
the methods differ in terms of network architectures and error
functions. Finally, on a more technical side, training of Duo-LDL
includes several recent learning techniques (e.g. weight initializa-
tion [31], weights decay, or mini-batch gradient descent) which
overall improve the learning process. In order to make com-
parison fair and focus exclusively on the impact of added label
orrelations part, the same training techniques were also applied
o AA-BP. This updated version of AA-BP algorithm is denoted
A-BP-T in the following results section.

Algorithm 1: Neural network training
Tset = {(x1, P1), (x2, P2), . . . , (xn, Pn)} - training set
xi ∈ Rn - training input samples
Pi = {p1i , p

2
i , . . . , p

q
i } - expected outputs: degrees of membership of

sample xi to the classes 1, 2, . . . , q
Function TrainNetwork(Tset )

Create mulitlayer perceptron with input layer: n neurons,
hidden layer: 40 neurons, output layer: q(q − 1) neurons
Use Xavier Weight Initialization [31] to randomly initialize
weights
for fixed number of epochs do

Create random mini batch B ⊂ Tset
forall the input sample bk = (xk, Pk) ∈ B do

Feedforward network with xk and get outputs cij(xk),
i, j ∈ {1, . . . , q}, i ̸= j, where cij is the value of
((i − 1)(q − 1) + j)th output neuron
Compute error Eij = pik − pjk − cij(xk)2

end
Backpropagate aggregated error from all samples in B and
update network weights.

end

5. Experimental setup

This section presents error measures and benchmark problems
used in the experimental evaluation of the proposed method.
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.1. Benchmark problems

Following Geng’s introductory paper to LDL [3], in the experi-
ental assessment of Duo-LDL efficacy, the same as therein set of
5 popular and well-established benchmark problems were used.
ll these data sets are derived from real-life domains and possess
arious characteristics in terms of the number of instances, input
eatures and labels, as presented in Table 1.

Data set Movie [5] contains Netflix ratings of more than 7000
ovies. For each movie the feature vector includes information
bout actors, a director, country of production, genre, etc. in
he form of numeric values (one hot encoding). The output is
distribution over 5-level rating (the percentage of each rating

evel) based on over 54 million spectators assessments.
The next data set Human Gene is the largest among considered

enchmarks in terms of the number of examples and labels.
nstances are human genes represented in the form of 36 real
umber descriptors [32]. The goal is to assign the gene expression
degrees of membership) for 68 diseases (classes).

The instances of Natural Scene data set [33] are images of
nature, each described by a 294-dimensional feature vector — a
compressed image representation. First, for each image, 10 people
sorted the following 8 labels: (plant, sky, cloud, snow, building,
desert, mountain, water) by their relevance to the image. Next,
based on these 10 rankings, label distributions were created for
the images, which present the learning goal in this benchmark.

SJAFFE is a data set derived from the JAFFE database [34]
that contains grayscale photos of human faces represented in the
form of 243-dimensional feature vectors. For each face, 60 people
scored each of the 6 following emotions (happiness, sadness,
surprise, fear, anger, and disgust) in a 5-degree scale. For each
instance a normalized average score for each emotion is used as
a label distribution to be learnt in this problem.

The next benchmark – SBU_3DFE – is similar to SJAFFE but
based on a larger database composed of 2500 instances of 3D
facial expression images [35], scored in the way similar to the
SJAFFE set (23 people scored each of 6 emotions). The goal is to
assign a degree of relevance of the above-listed emotions for a
given sample.

The final 10 benchmark sets presented in Table 1 contain
the data related to gene expressions of yeasts [36]. Each input
instance represents one gene and is described by 24 numbers
forming the so-called phylogenetic profile. Each output label cor-
responds to a result of the gene expression process in a cer-
tain, pre-defined time point. The task is to learn normalized
distributions of these expression levels.

All the above-described benchmark data sets can be down-
loaded from [37].

5.2. Evaluation measures

Quality verification of an LDL algorithm is a rather ambigu-
ous task due to the lack of comprehensive and well-established
evaluation measures. The main reason for that is the fact that
in LDL, instead of comparison of two binary values, vectors of
real numbers (label distributions) must be confronted. Therefore,
the number of possible assessments is much higher and, what
is more, each of the existing evaluations measures addresses
only specific aspects of the tested algorithm. For this reason we
take into consideration 6 distinct evaluation measures which are
derived from different metrics. All of them were previously used
for making comparisons between LDL algorithms in the related
literature [3]. The metrics are briefly introduced in the remainder
of this subsection.

Let us denote by Px = {p1(x), . . . , pq(x)} a vector of target
(true) values of label distribution (p(x)) for sample x and by P̂ =
x

4

{p̂1(x), . . . , p̂q(x)} a vector of model output values (predictions)
for this sample. Then the considered error measures are defined
as follows.

Chebyshev distance (Cheb):

D1(Px, P̂x) = max
j∈{1,...,q}

|pj(x) − p̂j(x)|

Clark distance (Clark):

2(Px, P̂x) =

√ q∑
j=1

(pj − p̂j)2

(pj + p̂j)2

Canberra metric (Canber):

D3(Px, P̂x) =

q∑
j=1

|pj(x) − p̂j(x)|
pj(x) + p̂j(x)

Kullback–Leibler divergence (KL-div):

D4(Px, P̂x) =

q∑
j=1

pj(x) ln
pj(x)
p̂j(x)

Cosine coefficient (Cosine):

5(Px, P̂x) =

∑q
j=1 p

j(x)p̂j(x)√∑q
j=1(pj(x))2

√∑q
j=1(p̂j(x))2

Intersection similarity (Intersec):

D6(Px, P̂x) =

q∑
j=1

min(pj(x), p̂j(x))

For each of the above-mentioned evaluation metrics, values
btained for all test samples are averaged, so as to provide the
inal assessment:

i =
1

|Xtest |

∑
x∈Xtest

Di(Px, P̂x) (7)

here Xtest denotes the test set.
For all measures, their values fit the interval [0, 1]. The first

four of them are distance measures and the smaller their values,
the higher the quality of the assessed method. The remaining two
measures are based on similarity, hence the greater their values,
the higher the estimated performance.

According to a measure-related survey paper [38] each of the
above-listed measures belongs to a different family of measures
and covers different aspects of LDL results. For example Chebyshev
distance considers only the worst match over the whole label
distribution while Clark or Canberra metric average the errors,
each of them in a distinct manner.

5.3. Duo-LDL training procedure

For each data set a randomly selected subset of 90% of all
data samples were used for training and the remaining 10% for
testing. Network weights update was performed with backprop-
agation algorithm with the learning rate set to 0.05, and with the
weight decay regularization having weight decay cost equal to
0.5. Expected outputs were computed according to Eq. (2) based
on true label distribution. Learning process was performed in
mini-batch mode with batch size equal to 50 (weight update was
calculated based on mean value of the error function (Eq. (6))
for 50 training examples). Training was stopped after 100 epochs.
The order of presented examples was randomized in each epoch.
A hyperbolic tangent activation function was used to fit the
output range ([−1, 1]). Implementation of the method with the
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Table 1
Basic parameters of 15 benchmark data sets used in the experimental evaluation of the Duo-LDL
approach.
Data set # Instances # Features # Labels Reference

Movie 7755 1869 5 [5]
Human Gene 30542 36 68 [32]
Natural Scene 2000 294 9 [33]
SJAFFE 213 243 6 [34]
SBU_3DFE 2500 243 6 [35]
Yeast-alpha 2465 24 18 [36]
Yeast-cdc 2465 24 15 [36]
Yeast-elu 2465 24 14 [36]
Yeast-diau 2465 24 7 [36]
Yeast-heat 2465 24 6 [36]
Yeast-spo 2465 24 6 [36]
Yeast-cold 2465 24 4 [36]
Yeast-dtt 2465 24 4 [36]
Yeast-spo5 2465 24 3 [36]
Yeast-spoem 2465 24 2 [36]
b
a

s
a
t
p

above-described setup can be downloaded from a public code
repository [39].

Please note that the constraint concerning the probability
istribution summing up to 1 (Eq. (1)) is already incorporated into
he proposed method by means of the transformation formula
4), and therefore, there is no need to use any normalization
echniques, e.g. the softmax function, in the output layer. The
nitial experiments fully supported this claim.

. Experimental results

The results presented in this section are derived from 30
ndependent runs, each with 10-fold cross-validation, for each of
5 benchmark problems. For each benchmark, the final evaluation
easure (7) is calculated as the average result of 300 outcomes

30 runs with 10 folds).
The results for 10 methods used for comparison with Duo-

DL were independently reproduced using codes published on the
ebsite [37] or original codes provided courtesy of competitive
ethods’ authors.
For the sake of space savings, the detailed results are pre-

ented only for the two most challenging benchmarks (Movie –
ith the greatest number of input features, and Human Gene –
ith the greatest number of labels) in Tables 2 and 3, respectively.
he detailed results for all 15 data sets can be downloaded from
ur webpage [40].
In the case of Movie set, Duo-LDL yielded the best results for
evaluation measures with statistical significance for most of

ompetitive methods (c.f. Table 4). Also for the other benchmark,
uman Gene, with the greatest number of labels, also for 4 error
etrics our method gained the leading position, however in this
ase differences are smaller (especially to recently introduced
ethods — LDL-LCLR, GD/Adam-LDL-SCL, LALOT and BFGS-LLD)
nd not statistically significant. For both benchmarks the worst
esults were obtained by PT-Bayes. The previous neural network
pproach (AA-BP) was ranked in the middle of the pack. The re-
aining detailed results for the other benchmarks (not presented

n the paper) fit the following pattern: generally Duo-LDL, BFGS-
LD and LDL-LCLR occupy the two leading positions and PT-Bayes,
T-SVM and AA-BP are recognized as the weakest approaches.
A cumulative comparison of the methods is presented in

able 4. Each value in the table belongs to the interval
1.00, 12.00] are represents the average ranking score of the
espective (method, benchmark) pair across all 6 error measures.
wo algorithms (BFGS-LLD and Duo-LDL) are distinctly better
han all the remaining ones. Duo-LDL gained the first place in the
ase of 5 benchmarks. Additionally, in 2 out of these 7 its average
anking position was equal to 1.00, which means receiving the
5

est score for all evaluation measures. BFGS-LLD was the winning
lgorithm in 6 benchmarks, out of which 4 were scored with 1.00.
In a head-to-head comparison the BFGS-LLD method was

lightly more effective than our approach achieving the overall
verage score (across all benchmarks) equal to 2.11 compared
o 2.20 of Duo-LDL. The main reason for that was visibly worse
erformance of Duo-LDL on SJAFFE, for which it gained around 6

place. This weaker performance of Duo-LDL stems from a very
small number of training examples in the data set which is
insufficient to make the MLP training process effective. Generally
speaking, nonlinear methods (such as neural networks) need
more input data to learn/solve LDL tasks than linear methods [41]
(such IIS-LLD or BFGS-LLD). Please observe that AA-BP algorithm,
which is also neural network based, obtained even worse results
than Duo-LDL for this benchmark. Another methods like GD-LDL-
SCL and Adam-LDL-SCL also obtained significantly worse results
for SJAFFE benchmark and suffer from lack of training examples.

Statistical relevance of the differences between our method
and competitive approaches was tested according to 1-tailed
t-test with significance level equal to 0.05 and with normal dis-
tribution of data checked by Shapiro–Wilk test. As can be ob-
served in Table 4, majority of Duo-LDL results are statistically
significantly better than those of PT-Bayes, PT-SVM, AA-kNN, AA-
BP, and AA-BP-T algorithms. A comparison of Duo-LDL with the
strongest among tested methods (BFGS-LLD) shows statistically
significant advantage only in two cases. For Movie benchmark,
Duo-LDL outperforms BFGS-LLD and for SJAFFE data set BFGS-
LLD dominates (for the reasons explained above). For all other
benchmarks no statistically significant differences were detected.
Generally, there is not much statistically significant differences
recognized between 7 rightmost methods and based on detailed
results all of them yield very similar results.

Another comparison of the methods, form a different per-
spective, i.e. considering the average ranking positions for each
evaluation measure across all benchmark sets, is presented in
Table 5. Again BFGS-LLD and Duo-LDL superiority over com-
petitive approaches can be easily noticed, and again BFGS-LLD
outperforms Duo-LDL — in this case in 4 out of 6 evaluation
metrics, albeit the differences are not statistically significant.
No significant differences in results can be observed among the
measures.

One of the disadvantages of presentation of results by means
of ranking positions is blurring the detailed differences between
methods under comparison. In order to address this problem
cumulative normalized scores over all benchmarks, per each
evaluation measure were calculated for each method and pre-
sented in Table 6. Observe that evaluation measures return values
from different intervals and for some of them, the greater the
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able 2
he average results for the Movie benchmark set. Best results for each evaluation measure are bolded.

PT-Bayes PT-SVM AA-kNN AA-BP AA-BP-T IIS-LLD BFGS-LLD LALOT GD-LDL-SCL Adam-LDL-SCL LDL-LCLR Duo-LDL

Chebyshev 0.199 0.213 0.154 0.157 0.154 0.150 0.136 0.271 0.134 0.124 0.128 0.124
Clark 0.799 0.797 0.652 0.675 0.633 0.591 0.589 1.439 0.571 0.543 0.564 0.565
Canberra 1.547 1.537 1.276 1.269 1.206 1.137 1.138 2.232 1.123 1.041 1.085 1.077
Kullback–Leibler 0.953 0.268 0.201 0.179 0.160 0.137 0.140 0.469 0.233 0.215 0.125 0.113
Cosine 0.850 0.806 0.880 0.895 0.900 0.905 0.912 0.739 0.913 0.924 0.921 0.926
Intersection 0.725 0.711 0.780 0.788 0.793 0.800 0.809 0.647 0.811 0.820 0.819 0.821
Table 3
The average results for the Human Gene benchmark set. Best results for each evaluation measure are bolded.

PT-Bayes PT-SVM AA-kNN AA-BP AA-BP-T IIS-LLD BFGS-LLD LALOT GD-LDL-SCL Adam-LDL-SCL LDL-LCLR Duo-LDL

Chebyshev 0.195 0.054 0.065 0.059 0.057 0.053 0.053 0.053 0.053 0.053 0.053 0.053
Clark 4.674 2.139 2.388 3.344 2.736 2.123 2.111 2.115 2.112 2.112 2.108 2.110
Canberra 34.238 14.631 16.283 22.788 19.321 14.541 14.453 14.487 14.451 14.433 14.443 14.442
Kullback–Leibler 1.887 0.240 0.301 0.500 0.366 0.238 0.236 0.237 0.236 0.237 0.236 0.236
Cosine 0.456 0.832 0.766 0.726 0.773 0.833 0.834 0.834 0.834 0.835 0.834 0.835
Intersection 0.470 0.781 0.742 0.671 0.717 0.783 0.784 0.784 0.785 0.785 0.785 0.785
Table 4
Average ranking positions of tested methods for each benchmark data set, across all 6 evaluation measures. Best values for each benchmark are bolded, gray
background denotes statistically significant difference in results between Duo-LDL and the respective method.

PT-Bayes PT-SVM AA-kNN AA-BP AA-BP-T IIS-LLD BFGS-LLD LALOT GD-LDL-SCL Adam-LDL-SCL LDL-LCLR Duo-LDL

Movie 10.67 10.50 8.17 8.00 6.67 5.33 5.00 11.83 4.83 2.50 2.67 1.50

Human Gene 12.00 8.00 9.50 10.83 9.67 6.00 3.00 4.33 2.33 2.17 1.67 1.33

Natural Scene 11.33 11.33 6.17 6.50 6.67 6.67 3.67 9.83 3.67 8.00 2.50 1.50

SJAFFE 5.17 6.33 2.67 8.50 7.67 3.83 1.17 9.33 11.00 11.00 2.83 6.50

s-BU 3DFE 9.50 11.00 3.67 8.83 7.33 5.83 1.67 11.33 2.00 5.67 7.83 2.83

Yeast-alpha 12.00 9.00 6.50 11.00 10.00 7.50 1.50 4.67 3.50 3.17 1.33 1.00

Yeast-cdc 12.00 9.00 7.00 11.00 10.00 6.67 1.67 6.00 2.50 1.00 1.50 1.17

Yeast-cold 12.00 9.00 7.00 11.00 10.00 6.67 1.00 6.00 3.00 1.67 1.00 1.83

Yeast-diau 12.00 9.83 6.83 11.00 9.00 6.00 2.83 8.00 1.50 1.00 3.00 3.50

Yeast-dtt 12.00 8.67 8.00 11.00 10.00 5.00 1.00 6.67 3.00 1.50 1.17 1.50

Yeast-elu 12.00 9.50 8.00 11.00 8.67 5.50 2.67 6.83 1.00 1.33 2.67 3.00

Yeast-heat 12.00 10.00 7.17 10.17 7.17 4.17 1.00 6.67 5.50 4.17 1.17 1.50

Yeast-spo 12.00 7.83 6.83 11.00 10.00 6.50 1.00 4.00 4.17 3.67 1.00 1.00

Yeast-spo5 12.00 6.83 11.00 9.33 8.00 6.83 2.00 2.50 5.17 1.00 2.00 1.83

Yeast-spoem 12.00 10.00 11.00 6.67 6.67 6.17 2.50 6.00 2.50 1.00 3.00 3.00

all 11.24 9.12 7.30 9.72 8.50 5.91 2.11 6.93 3.71 3.26 2.36 2.20
Table 5
Average ranking positions of the tested methods for each evaluation measure, across all 15 benchmarks. Best values for each measure are bolded, gray background
enotes statistically significant differences in results between Duo-LDL and the respective method.

PT-Bayes PT-SVM AA-kNN AA-BP AA-BP-T IIS-LLD BFGS-LLD LALOT GD-LDL-SCL Adam-LDL-SCL LDL-LCLR Duo-LDL

Chebyshev 11.07 9.20 7.47 9.53 8.20 5.67 1.87 6.60 3.67 3.40 2.47 2.07

Clark 11.20 9.27 7.20 9.93 8.80 6.47 2.20 7.47 4.40 3.53 2.33 2.60

Canberra 11.40 9.40 7.40 10.07 8.80 6.33 2.87 7.20 4.47 3.33 2.73 2.53

Kullback–Leibler 11.33 8.53 7.33 9.80 8.53 4.73 1.73 6.53 3.33 3.60 2.13 2.00

Cosine 11.20 9.13 7.27 9.40 8.20 5.93 1.80 6.60 2.93 2.67 2.07 1.73

Intersection 11.27 9.20 7.13 9.60 8.47 6.33 2.20 7.20 3.47 3.00 2.40 2.27

all 11.24 9.12 7.30 9.72 8.50 5.91 2.11 6.93 3.71 3.26 2.36 2.20
value the better while for the others, conversely, smaller val-
ues are preferred. Combining them into a common cumulative
assessment relied on normalization of their values to the unit
interval. For each evaluation measure and each benchmark set
the best value among all tested methods was mapped to 1 and
6

the worst one to 0. All the others were mapped linearly between
0 and 1. This presentation perspective reveals that in most of the
cases (especially for all Yeast data sets) differences among the
seven rightmost algorithms are minor. This observation was also
confirmed in already discussed tables, in which only a few
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able 6
ormalized results averaged over all evaluation measures. Each value belongs to the interval [0, 1]. The higher the value the better the assessment of the respective
ethod. Best values for each data set are bolded.

PT-Bayes PT-SVM AA-kNN AA-BP AA-BP-T IIS-LLD BFGS-LLD LALOT GD-LDL-SCL Adam-LDL-SCL LDL-LCLR Duo-LDL

Movie 0.4702 0.5394 0.8151 0.8338 0.8668 0.9046 0.9349 0.0960 0.9270 0.9770 0.9766 0.9909
Human Gene 0.0000 0.9913 0.8925 0.7075 0.8370 0.9960 0.9987 0.9980 0.9991 0.9996 0.9995 0.9998
Natural Scene 0.0598 0.1229 0.6392 0.5321 0.5236 0.5156 0.6091 0.2634 0.6194 0.4822 0.6870 0.8314
SJAFFE 0.9849 0.9756 0.9935 0.9593 0.9621 0.9901 0.9998 0.8655 0.0000 0.0000 0.9924 0.9672
s-BU 3DFE 0.3464 0.2204 0.7520 0.3914 0.4993 0.6268 0.9646 0.0579 0.8626 0.6798 0.5400 0.8454
Yeast-alpha 0.0000 0.9707 0.9899 0.7773 0.8739 0.9890 0.9997 0.9931 0.9975 0.9978 0.9997 1.0000
Yeast-cdc 0.0000 0.9763 0.9884 0.8110 0.8912 0.9889 0.9993 0.9917 0.9988 1.0000 0.9994 0.9994
Yeast-cold 0.0000 0.9799 0.9889 0.8216 0.9018 0.9894 1.0000 0.9923 0.9986 0.9998 1.0000 0.9998
Yeast-diau 0.0000 0.9309 0.9763 0.9080 0.9426 0.9807 0.9918 0.9585 0.9981 1.0000 0.9915 0.9910
Yeast-dtt 0.0000 0.9754 0.9793 0.9267 0.9560 0.9913 1.0000 0.9884 0.9969 0.9995 0.9997 0.9995
Yeast-elu 0.0000 0.9461 0.9528 0.9205 0.9495 0.9860 0.9949 0.9799 1.0000 0.9993 0.9949 0.9947
Yeast-heat 0.0000 0.9605 0.9725 0.9602 0.9725 0.9862 1.0000 0.9744 0.9808 0.9869 0.9995 0.9992
Yeast-spo 0.0000 0.9799 0.9840 0.9582 0.9723 0.9847 1.0000 0.9917 0.9905 0.9925 1.0000 1.0000
Yeast-spo5 0.0000 0.9802 0.9551 0.9736 0.9778 0.9802 0.9923 0.9916 0.9875 1.0000 0.9923 0.9927
Yeast-spoem 0.0000 0.9405 0.9255 0.9575 0.9575 0.9585 0.9742 0.9628 0.9779 1.0000 0.9725 0.9725

Average 0.1241 0.8327 0.9203 0.8292 0.8723 0.9245 0.9639 0.8070 0.8890 0.8743 0.9430 0.9722
m
c
A
w

differences between Duo-LDL and these 6 methods were marked
as statistically significant. The leading position in Table 6 was
gained by Duo-LDL followed by BFGS-LLD and LDL-LCLR.

As mentioned in Section 4, apart from a novel idea of in-
orporating information related to pairwise inter-dependencies
etween the classes, Duo-LDL also benefits from application of
ertain state-of-the-art training techniques (weights decay, mini-
atch gradient descent) which were not applied during the train-
ng process of the previous neural network based method —
A-BP. In order to assess the influence of these new training
echniques on the Duo-LDL efficacy, the AA-BP-T method, i.e. AA-
P extended by the training techniques used in Duo-LDL training,
as additionally evaluated. The results presented in Tables 4 and
show that these training enhancements definitely improved

he AA-BP performance, however, the gap between AA-BP-T and
he best approaches is still significant. Consequently, it can be
oncluded that application of the up-to-date training techniques
s not the key aspect of Duo-LDL overall efficiency. The main
trength of the proposed algorithm lays in adequately defined
rror function and design of the output layer, which effectively
andles pairwise inter-dependencies between classes.

.1. Detailed comparison of Duo-LDL and BFGS-LLD on artificially
enerated data sets

The results presented so-far show dominance of BFGS-LLD
nd Duo-LDL methods. In 8 cases BFGS-LLD obtained better re-
ults and for 7 remaining ones, Duo-LDL was superior. Since
he methods employ very different solution techniques — quasi-
ewton function optimization versus neural network training,
urther analysis of their operational differences, in particular their
trengths and weaknesses seems to be worthwhile. In order to
ccomplish this task, a set of artificial benchmarks inspired by
design method proposed in [3] and [42] were created. In our
xperiments the baseline idea from the above-cited papers was
xtended to creation of various data sets with different numbers
f labels, features and training examples, to allow for detailed
valuation of method-specific aspects. Artificial data sets were
reated based on the following set of equations.

ti = fi + 0.5f 2i + 0.2f 3i + 1, i = 1, . . . , n
ψ1 = (wT

1t)
2

ψ2 = (wT
2t + λφ1)2

...

ψq = (wT
q t + λφq−1)2

pjx =
ψj∑q j = 1, . . . , q

(8)
k=1 ψk

7

where Px = {p1x , . . . , p
q
x} is distribution of labels assigned to

instance x = [f1, . . . , fn], t = [t1, . . . , tn]T , λ = 0.001 and wj = [j
od q, (j+1) mod q, . . . , (j+q−1) mod q]T , j = 1, . . . , q. Each
omponent of x was uniformly sampled within the range [−1, 1].
total of 392 data sets and corresponding label distributions
ere generated according to (8), with the following parameters:

• q ∈ {2, 3, 5, 10, 15, 20, 30},
• n ∈ {2, 3, 5, 10, 15, 20, 30},
• d ∈ {50, 100, 200, 500, 1000, 2000, 5000, 10000}.

For each possible selection of (q, n, d) one benchmark was
generated and the results of 10-fold cross validation were aver-
aged. The outcomes for two evaluation measures (Chebyshev loss
and Intersection loss) are presented in Figs. 2 and 3, respectively.

Analysis of results with respect to the number of labels
(Figs. 2(a) and 3(a)) leads to a conclusion that BFGS-LLD is better
suited for the tasks with smaller numbers of labels (below 10–
15), while the advantage of Duo-LDL is visible for the sets with
greater number of classes. Similar conclusions can be drawn in
reference to the number of input features (Figs. 2(b) and 3(b)).
Again BFGS-LLD outperforms Duo-LDL for data sets with smaller
numbers of features (less than 10). Both algorithms naturally
yield better results for greater numbers of features, however,
the improvement is faster in the case of Duo-LDL. This observa-
tion explains Duo-LDL supremacy in Movie benchmark discussed
in the previous section. Similarly, poor Duo-LDL performance
for SJAFFE was presumably caused by small number of input
instances (213 only). This hypothesis was confirmed in the exper-
iments with artificially generated data. Figs. 2(c) and 3(c) show
fast improvement of Duo-LDL results along with an increase of
the number of training samples whereas this parameter (the
number of instances) influences BFGS-LLD results to a little extent
only. The efficacy of Duo-LDL grows fast with the increasing
number of examples and above approximately 1000 of them
exceeds BFGS-LLD.

In summary, a comparison of Duo-LDL and BFGS-LLD on ar-
tificially generated data sets demonstrates that for benchmarks
with smaller number of labels, input features or examples BFGS-
LLD is a superior approach whereas for bigger benchmark sets (in
terms of the number of classes or features) the prevailing method
is Duo-LDL.

6.2. Computation time

Besides efficacy another relevant aspect of designed algo-
rithms is computation time. Duo-LDL being a neural-based method
spends most of its computation time on training. Requests to
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Fig. 2. Scalability results of BFGS-LLD and Duo-LDL results measured by Chebyshev loss with respect to the number of (a) labels, (b) features and (c) examples,
espectively.
lready trained network are responded immediately and testing
hase takes less than 0.1% of the whole experimental time. While
n many real-life applications the training time is not critical and
he model response time is actually the most important, in order
o make a fair comparison, for all tested methods computation
imes of the entire process (training and testing) are presented
n Table 7. All experiments were run on Intel Core i7-7500U @
.70 GHz with 16 GB RAM. Clearly, all algorithms reported the
ongest times for Movie and Human Gene benchmarks which have
he greatest numbers of input features and instances, respec-
ively. Generally speaking, PT-SVM and LALOT are the slowest
ethods, whereas AA-kNN and Adam-LDL-SCL are the fastest
nes.
Among the three best-performing methods (cf. Tables 4–6)

omputations times of BFGS-LLD and Duo-LDL are similar — the
atter obtained better time results in 8 out of 15 benchmarks.
he third method (LDL-LCLR) which demonstrated the highest
esults quality suffers from poor scalability. For small data sets
ts computation time is among the shortest ones, but for bench-
arks with higher numbers of more features or classes its time
erformance significantly worsens.
Fig. 4 compares time scalability of BFGS-LLD and Duo-LDL.

FGS-LLD scales better with respect to the number of labels
ecause in Duo-LDL the size of the output layer is proportional to
he squared number of labels, so increasing the number of them
as a clear impact on the network complexity (the number of
utput nodes and number of connections). On the contrary, in
FGS-LLD increasing the number of labels only affects the size of
n auxiliary matrix used for computing the search direction and
tep. On the other hand, with respect to the number of features
8

time scalability of Duo-LDL outperforms BFGS-LLD, since in Duo-
LDL adding a new feature results in addition of one input node
only (with outgoing connections), whereas in BFGS-LLD it impacts
the most time-consuming part of the algorithm — inverse Hessian
matrix approximation. Both methods scale approximately linearly
concerning the number of examples (please note a logarithmic
scale in Fig. 4(c)).

7. Practical relevance and possible applications

LDL problems arise in various domains including biology [3],
sociology [43,44], security [6], image processing [33,45,46] or
multimedia [5]. It appears, for instance, in gene expression do-
main [3], e.g. detection to which functions the genes correspond
or which disease they may cause. Another application area is
recognition of emotions based on face expression images [43,47].
Since human face often reflects a mixture of several emotions
to different degrees (e.g. anger and sadness), LDL is perfectly
suited to tackle this task. LDL is also well-fitted to the task of
recognition of objects in the image. Classical approaches provide
binary information about the existence of an object in the picture.
However, in certain real-life applications the task is not only
to decide whether or not the object appears in the picture, but
to assess how important it is from the point of view of the
image composition or a topic presented in that image [33], or
to which extent an object dominates the picture (e.g. in size or
quantity) [46]. Please refer to Fig. 5 as an example.

Likewise, certain types of multiclass predictions can be mod-
eled as LDL problem and solved by dedicated methods. One
example is a prediction of people’s opinion about the movie
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Fig. 3. Scalability results of BFGS-LLD and Duo-LDL measured by Intersection loss with respect to the number of (a) labels, (b) features and (c) examples, respectively.

Fig. 4. Time scalability of BFGS-LLD and Duo-LDL with respect to the number of (a) labels, (b) features and (c) examples, respectively.
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able 7
omputation time (in seconds) over all tested benchmarks.

PT-Bayes PT-SVM AA-kNN AA-BP AA-BP-T IIS-LLD BFGS-LLD LALOT GD-LDL-SCL Adam-LDL-SCL LDL-LCLR Duo-LDL

Movie 215 68177 431 727 491 377 1801 33746 3642 973 19539 8752
Human Gene 102 63994 1315 539 352 573 2276 15076 184 51 13529 1429
Natural Scene 24 29856 33 79 43 123 2047 4591 64 17 9415 91
SJAFFE 29 8714 41 89 60 83 370 3487 55 5 534 71
s-BU 3DFE 2 1907 3 20 22 38 85 261 3 1 615 5
Yeast-alpha 28 3425 34 84 59 46 42 1115 153 8 150 177
Yeast-cdc 29 2614 36 68 55 39 37 1101 121 26 3701 116
Yeast-cold 28 163 36 61 31 33 34 533 16 3 14 15
Yeast-diau 29 472 34 63 48 35 40 523 48 4 34 28
Yeast-dtt 28 145 36 61 37 34 32 405 2 2 16 15
Yeast-elu 29 2293 37 67 39 38 35 900 120 11 3353 104
Yeast-heat 28 364 36 62 34 34 34 709 55 13 24 24
Yeast-spo 28 304 36 62 34 33 40 679 54 13 24 23
Yeast-spo5 29 79 36 60 46 32 31 490 35 2 13 13
Yeast-spoem 28 45 36 60 31 31 30 469 24 4 11 11
W

Fig. 5. In LDL problem formulation, not only information about the existence of
bjects in the image but also its importance for the entire image content can
e considered. For example, in the above picture a dog in foreground is more
elevant than people and trees in the background, or a bottle lying in the grass.
lassical multi-label approach cannot grade objects and consider this kind of
ontextual assessment.

efore its premiere [5]. The movie can be annotated by its genre,
eywords, actors playing the main roles, a director, etc. A typ-
cal approach is to predict one particular movie-related aspect,
.g. the average rating. In the case of LDL formulation of this
ask, a distribution of ratings can be modeled. Other real-life
pplications of LDL include head pose estimation [45,48], facial
andmark detection [49], crowd counting in public video surveil-
ance [6] or facial age estimation [44,50]. Furthermore, multilabel
lassification tasks can be considered as special cases of LDL, so
ll kinds of problems defined as multilabel learning tasks can, in
rinciple, be transformed to a more general LDL framework. All
he above examples show that the proposed Duo-LDL algorithm
an be applied to various real-world scenarios.
For the sake of comparability with other methods, the eval-

ation of Duo-LDL was performed on standard benchmark sets
hat are widely used in the LDL domain. However, please note
hat all of 15 benchmark sets used in the evaluation process
re related to practical problems originated from real-world de-
ands, e.g. movies’ rating distribution [5], gene expressions for
iseases [32], landscape images classification [33], human faces
motion recognition [34,35] (2 data sets), or phylogenetic profile
f yeasts genes [36] (10 data sets).

. Conclusions

Label Distribution Learning is a relatively new type of clas-
ification problems with straightforward applications in various
10
real-life domains. To the best of our knowledge, among LDL solu-
tion methods proposed in the literature, there has been only one
approach (AA-BP [3]) that employs neural networks. In this paper
we propose another neural network solution to LDL (Duo-LDL)
which extends a straightforward approach presented in [3] by
incorporating the information about pairwise inter-class depen-
dencies into the network training process by means of adequate
design of the output layer and specific form of the error function
used during training.

Duo-LDL is first evaluated on a set of 15 well-established
benchmarks and 6 error measures proving its advantage over
AA-BP in all cases, in the majority of them the improvement
is statistically significant. Furthermore, the results confirm that
Duo-LDL performance is comparable to the stat-of-the-art ap-
proaches to LDL. The method is superior to all but two competi-
tive approaches, and is on par with the best overall (non-neural)
LDL algorithms (BFGS-LLD and LDL-LCLR). Even though in a head-
to-head comparison BFGS-LLD achieves in average slightly better
results the advantage is not meaningful in statistical sense.

An in-depth comparison of both methods on a wide selection
of artificially generated data sets revealed that Duo-LDL is espe-
cially strong in the case of the most challenging benchmarks, with
extensive feature representation in the input and/or numerous
classes in the output. This property gives a promise for successful
application of the method to large and demanding data sets
frequently appearing in various real-life domains.

In the paper we have focused on the LDL formulation as a su-
pervised classification problem. There are, however, also problem
domains in which full label-related information is not avail-
able, for instance, either a set of possible classes or per sample
class distribution is revealed only partially. For such imperfect-
information formulations of LDL problems one can employ semi-
supervised learning approaches, e.g Label Propagation [51] or
Gaussian Mixture Models [52]. We consider this topic as an
interesting future work.
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